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Neural signatures of social inferences predict
the number of real-life social contacts and
autism severity

Anita Tusche 1,2 , Robert P. Spunt 1, Lynn K. Paul 1, Julian M. Tyszka 1 &
Ralph Adolphs 1,3

We regularly infer other people’s thoughts and feelings from observing their
actions, but how this ability contributes to successful social behavior and
interactions remains unknown.We show that neural activation patterns during
social inferences obtained in the laboratory predict the number of social
contacts in the real world, as measured by the social network index, in three
neurotypical samples (total n = 126) and one sample of autistic adults (n = 23).
We also show that brain patterns during social inference generalize across
individuals in these groups. Cross-validated associations between brain acti-
vations and social inference localize selectively to the right posterior superior
temporal sulcus and were specific for social, but not nonsocial, inference.
Activation within this same brain region also predicts autism-like trait scores
from questionnaires and autism symptom severity. Thus, neural activations
producedwhile thinking about other people’smental states predict variance in
multiple indices of social functioning in the real world.

Although it is a platitude that we are a social species, the number of—
and participation in—social relationships differs dramatically across
individuals. This variance in people’s social ties and network char-
acteristics can impact health and well-being1–4. The possibility that
some of the variability in people’s social networks might have a neural
basis has received considerable attention. A popular evolutionary
account, the social brain hypothesis, proposed that the large size of
the primate neocortex evolved in order to sustain the demands of
increasingly complex social interactions and larger social groups5,6.
While this hypothesis is debated7–9, it has motivated a number of
neuroimaging studies that attempt to link individual differences in
social network characteristics to variance in brain structure, specifi-
cally in brain areas implicated in processing social information and
behaviors10,11. For example, online social network size on social media
has been shown to correlate with variability in gray matter density in
the right superior temporal sulcus (STS), a region implicated in social
perception and processing biological motion12 (but see ref. 13).
Moreover, the size and complexity of social networks have been

reported to correlate with the volume of the amygdala, a structure
associated with processing facial expressions12,14,15 (also see ref. 16 for
lesion evidence). Evidence for the link between variance in social net-
work size and the brain’s gray matter volume spans primate
species5,17–19.

A smaller number of neuroimaging studies in humans and non-
human primates have started to examine how these findings based
on brain structure might also extend to brain function, specifically in
brain regions associated with social cognition and social information
processing. For instance, initial correlational evidence linked varia-
bility in people’s social network characteristics to brain activation in
the amygdala or posterior superior temporal sulcus (pSTS) in
response to social stimuli such as biological motion20 or social
working memory14,21. Similarly, measures of functional connectivity
between brain regions have been correlated with social network
variability, both during social exclusion22 and task-free rest
periods23–26, and social network size of active interactions on social
media (Twitter)27.
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Previous associations of variance in brain structure and function
with social network characteristicsmotivate the hypothesis that neural
correlates of people’s abilities to process social information could
serve as predictive markers for one particular social network metric:
the commonly used social network index (SNI)4,10,15,26,28, which captures
thenumber of social contacts.However, priorwork leaves open critical
limitations with respect to generalizability and specificity and with
respect to delineating a possible cognitive process that might explain
the association found. First, all prior work has been exclusively based
on conventional correlations; no prior study has used a predictive
framework with cross-validation, leaving out-of-sample general-
izability unclear. Hereweaddress this issue using both cross-validation
and two replication samples of neurotypical individuals. Second, no
prior studies have further tested generalizability by incorporating
participant samples whose social cognition and social behavior are
outside the neurotypical range. Here we address this issue by testing a
fourth group with autism. By using a predictive model trained on data

from neurotypical individuals and tested on data from the autism
group,weprovide themost direct testof generalization topopulations
that are neurodiverse. Third, prior studies have typically been unable
to link social network size to a well-isolated, specific cognitive process.
Here we used a well-validated neuroimaging task that isolates social
inferences, both to define brain regions of interest (ROIs) as the basis
for all subsequent analyses, and for themultivariate activationpatterns
that served as input features for our prediction of individuals’ number
of social contacts. To probe the (social) specificity of our findings, we
further incorporated a control task using nonsocial (factual) infer-
ences. These features of our approach provide the most compelling
and specific evidence to date that social network characteristics like
the number of social contacts can be predicted from a specific neural
marker: regional patterns of brain activity produced when people
think about others’ mental states.

The ability to infer other people’s mental states is a pervasive
component of social cognition: we attribute others’ beliefs, intentions,
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c. Neural decoding of social inferences in the why/how task for each sample and brain region

a. Why/how social inference task b. Regions of interest (ROIs) identified in DS

Fig. 1 | Measuring social inference processing in the brain. a Why/how social
inference task (fMRI). In each task block, participants respond to yes/no questions
that require either social inferences about other people’s internal states (why? high
level of inference; left column) or factual inferences (how? low level of inference;
right column). The task uses two stimulus sets (emotional facial expressions, top
row; intentional hand actions, bottom row)48. An additional condition using non-
social stimuli to elicit why/how inferences is not displayed (implemented for the
replication samples 1 and 2 (RS1, RS2) and the autism spectrum disorder (ASD)
group). b Brain regions from which social inference could be decoded in the
neurotypical discovery sample (DS; why vs. how; p <0.05, FWE whole-brain cor-
rected at the voxel level; simple t test of whole-brain decoding accuracy maps at
the group level implemented in SPM12; see Table 2 for details and full names of
abbreviated brain areas). These clusters served as regions of interest (ROIs) for the
neural prediction of real-world social behavior in all four participant samples.

c Activation patterns in the ROIs (identified in the DS group) also decoded parti-
cipants’ engagement in social inferences (why vs. how) in RS1, RS2, and ASD
groups, verifying the ROIs selected based on results in DS. For each ROI and par-
ticipant sample, decoding accuracies are shown for each individual (circles within
violin plots; n biologically independent samples: DS = 59, RS1 = 20, RS2= 50,
ASD= 23). Dotted lines illustrate the chance level of the prediction (50%). Central
white marks of boxplots (gray bars within violin plots) indicate ROI-based median
accuracies, which were well above chance in each ROI and sample (all p’s < 0.05,
permutation tests, FDR-corrected). Edges of boxplots indicate the 25th–75th per-
centiles and whiskers of boxplots illustrate minima and maxima. Decoding
accuracies of social inferences were comparable across ASD and the matched RS1
groups (two-sample t tests, p’s > 0.52, FDR corrected). Source data are provided as
a Source Data file, for exact p values see Table S8.
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emotions, or desires all the time, in the real world, as in films and
novels. This social inference ability is sometimes broadly referred to as
“theory of mind” or “mentalizing”29–31. The capacity to infer other
people’s minds is a fundamental component of social intelligence32, is
thought to be required for successful social interactions33, contributes
to prosocial behaviors34,35, and has been linked to variance in social
network characteristics11,22,36. Typically, this social ability develops
between 3–5 years of age (37,38, for a review, see ref. 30), but is notably
delayed in children with autism spectrum disorder (ASD)39. Moreover,
deficits in the ability to make social inferences have been suggested to
contribute to the diagnostic difficulties in communication and social
interaction in ASD (for a review, see ref. 39). Further evidence that the
ability tomake social inferences is related to the capacity for successful
social interactions comes from behavioral findings in typically devel-
oped adults: variability in people’s ability to make social inferences
covaried with the size of their support clique, an index of an indivi-
dual’s ability to successfully build and maintain a social network40.

As reviewed above, there are thus associations between the
number of social contacts and neural variability, and between the
number of social contacts and social cognition. What is missing is a
direct link between all three: can we predict the number of social
contacts from the specific brain activations produced while partici-
pants engage in a specific social inference task? Here we focused on
social inference both because of its plausible link to social relation-
ships and because this cognitive process is known to engage a specific
set of brain structures. The brain network includes the pSTS, temporo-
parietal junction (TPJ), temporal poles, and medial prefrontal cortex
(mPFC)41–46. While the specifics can vary depending on the details of
the social inference task44, this evidence suggests that we can capture
social inference processing from activation in a set of well-described
brain areas. One of the best-validated tasks for social inference pro-
cessing in fMRI studies is the why/how task (Fig. 1a). This task has
strong psychometric properties and reliably activates the network of
brain regions described above, even in single participants47,48.

We used the why/how task together with questionnaire- and
observation-based assessments of social behavior to address three
specific questions: First, canwepredict the real-world number of social
contacts based on the multivariate pattern of neural activations to
social inferences measured in the laboratory? Second, does this acti-
vation pattern during social inferences generalize to predicting other
indices of social behavior, such as autism-like traits? Third, does this
prediction generalize to people with autism? To address these ques-
tions, we applied multivariate prediction techniques49,50 to brain acti-
vations obtained during the why/how task47,48. Going beyond
conventional correlation approaches, we used a predictive framework
with cross-validation to quantify whether the pattern of brain activa-
tions during social inference is associated with the number of social
contacts and other indices of real-world social behavior. Finally, we
also tested the specificity of the findings by comparing them to pre-
dictions obtained when using an fMRI task with an identical structure
but requiring causal inferences about nonsocial events rather than
social ones. We tested these questions in four participant samples: a
neurotypical DS, two neurotypical replication samples (RS1, RS2), and
a sample of high-functioning people with ASD (see Table 1 for details;
all statistical evaluations of neural predictions used non-parametric
permutation tests).

Results
Behavior
Number of social contacts: the number of social contacts in real life
was assessed by the SNI (http://www.midss.org/content/social-
network-index-sni) and varied considerably across individuals in all
four participant samples: a neurotypical discovery sample (DS), two
neurotypical replication samples (RS1, RS2), and a sample of high-
functioning people with ASD (Table 1). For completeness, Table 1 also

reports scores of network diversity and the number of embedded
networks of the SNI.While the current study focused on the number of
social contacts, high positive correlations among SNI measures
(Table S1) indicate that they might capture related metrics of social
network characteristics. Importantly, SNI scores showed sufficient
variance across participants in each sample to justify the neural pre-
diction of individual differences (Fig. 2a).

Autism-like traits and autism symptom severity: Table 1 also dis-
plays summary scores for three additional measures of social func-
tioning that we investigated in different participant samples: in
neurotypical individuals, we measured autism-like traits with the Aut-
ism Quotient (AQ, in DS and RS1)51 and the Social Responsiveness
Scale-2 (SRS-2, Adult Form, Self-Report, in RS2)52. Both the AQ and SRS-
2 have self-report versions used to screen for ASD in adults. We report
the SRS-2 for our larger replication sample RS2 as this measure has
been suggested to be preferable to the AQ for assessing the Broad
Autism Phenotype53. Within the general population, autism-like traits
have been proposed to be continuously distributed52. Consistent with
this notion, the distribution and range of behavioral scores of social
functioning (AQ, SRS-2) in all three neurotypical subject samples
allowed us to justify neural decoding of individual differences (Fig. 2b).
In the ASD group, we measured autism symptom severity from the
calibrated severity scores of the ADOS (social affect domain [ADOS
SA]; restricted, repetitive behavior domain [ADOS RRB]54,55). We focus
on symptom severity in the social affective domain (ADOS SA). As for
the SNI scores, ADOS SA scores indicated a sufficient variance for
analyses of individual differences in autism severity in this sam-
ple (Fig. 2b).

Behavior on the why/how task (fMRI): consistent with previous
implementations of the why/how task47,48, participants in all samples
performed at (or close to) ceiling (average response accuracy [%]:
DS = 94.61 ± 2.42, RS1 = 94.95 ± 2.82, RS2 = 94.80 ± 2.45, ASD = 93.04 ±
4.11; M ± SD; see Table S2 for summary scores on response accuracies,
RTs, and d’s separately for each task condition and sample). Accuracy
scores in the ASD group were significantly lower compared to those in
the two non-matched neurotypical samples (DS: t(80) = 2.14, [0.11,
3.03], p =0.04; RS2: t(71) = 2.28, [0.22, 3.30], p =0.03; independent
sample t tests, two-tailed, uncorrected), but not significantly different
from accuracies in the matched RS1 group (t(41) = 1.75 [−0.30, 4.12],
p =0.09). As expected, accuracy scores for neurotypical community
samples were comparable (DS vs. RS1: t(77) = 0.52, [−0.96, 1.64],
p =0.60; DS vs. RS2: t(107) = 0.42, [−0.73, 1.12], p = 0.68; RS1 vs. RS2:
t(68) = 0.22, [−1.20, 1.50], p =0.83). Consistently high response
accuracies (Table S2) demonstrate that participants in all four parti-
cipant samples gave valid task performances.

fMRI results: outline of the analysis approach
Our analysis strategy proceeded in several steps: First, we used an
established why/how fMRI task47,48 to locate functionally delineated
regions of interest (ROIs) fromwhich social inferenceprocessing could
be decoded in a discovery group of neurotypical individuals (DS, n =
59). Second, we examined whether neural activation patterns from
these ROIs predict individual differences in people’s number of social
contacts inDS. Third, using the same set of ROIs for consistency across
all participant groups, we replicated this prediction of individual dif-
ferences in two community samples of neurotypical individuals
(replication samples 1 and 2, RS1 and RS2). Fourth, we ensured the
specificity of our findings to social inferences by comparison with
neural activations obtained during nonsocial causal inferences. Fifth,
we investigated the generalizability of our findings to other measures
of peoples’ social functioning outside of the lab: autism-like traits in
neurotypical individuals (AQ scores51 in DS and RS1, and SRS-252 scores
in RS2). Finally, we extended our investigation to individuals diag-
nosed with Autism Spectrum Disorder (ASD). We examined whether
activation patterns subserving social inferences in neurotypical
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individuals would generalize to participant populations that are neu-
rodiverse. Specifically, we tested if they predict individual differences
in the number of social contacts and symptom severity in the social
domain (ADOS SA54) in the ASD group.

Identifying brain regions from which social inference can be
decoded in neurotypical adults (why/how fMRI task)
First, we localized activation patterns in the brain from which social
inferences can be decoded in the DS group (‘why’ vs. ‘how’ inferences
in the why/how fMRI task, see Fig. 1a). Using multivariate decoding
together with a searchlight approach35,49,50,56, we found that activation
patterns in the bilateral dorsomedial prefrontal cortex (DMPFC),
bilateral pSTS, left dorsal and ventral lateral prefrontal cortex (DLPFC,
VLPFC), and left superior frontal sulcus (SFS) reliably decoded social
inferences in the why/how task (p <0.05, FWE corrected at the voxel
level for the whole brain as implemented in SPM12). See Table 2 for
details and Fig. 1b for an illustration. These brain regions identified in
the DS group served as regions of interest (ROIs) for the subsequent
cross-validated prediction of the number of social contacts in real life
(and other behavioral measures of interest) in all four participant
samples. Thus, ROIs were independently defined concerning our key
analyses—the neural prediction of individual differences in peoples’
social functioning outside of the lab—anddifferent participant samples
(RS1, RS2, and ASD), reducing the risk of producing false positive
results and circular analysis (i.e., double dipping)57.

Complementary univariate analyses further confirmed the invol-
vement of the identified brain regions during social inference pro-
cessing (Table S6), mirroring findings of previous implementations of
the why/how task47,48. Figure S1 illustrates the overlap between uni-
variate and multivariate results. We defined ROIs based on the results
of the multivariate decoding analysis as they have been suggested to
be more sensitive than the univariate results58, and we intended to
closelymatch themultivariate analysis approach for the keyprediction
of social network scores.

Neural prediction of individual differences in the number of
social contacts in DS
Having localized brain areas that reliably decode social inference
processing in the DS group (Table 2; Fig. 1b), we proceeded to the key

question of the study: do neural activation patterns obtained during
social inferences predict individual differences in the number of social
contacts? We tested this hypothesis using an ROI-based cross-partici-
pant prediction approach for SNI scores56. Multivoxel activation pat-
terns in the right pSTS reliably predicted differences in the number of
social contacts across individuals in the DS (r =0.46 [−0.38, 0.26],
R2 = 0.21, p =0.004, permutation test, significant at padj < 0.05 FDR
corrected59; for illustration see Fig. 2c). No other ROI yielded predic-
tions above the chance level (Table 3).

Prediction of individual differences in the number of social
contacts in two replication samples (RS1 and RS2)
We showed that neural activation patterns for social inferences predict
variance in the number of social contacts in a community sample of DS
(cross-validated, localized to the right pSTS). To further validate this
finding, we aimed to replicate our results in two datasets of neuroty-
pical individuals: a smaller replication sample RS1 (N = 20) matching
theASDgroup (seebelow) and a larger replication sampleRS2 (N = 50).

First, as a sanity check, we validated the ROIs. Specifically, we
confirmed that neural activation patterns in the same ROIs derived
from the DS sample (Table 2) decoded social inferences in the why/
how task also in RS1 and RS2. For every ROI, we carried out a decoding
analysis of social inferences (‘why’ vs. ‘how’) (separately for RS1 and
RS2). These analyses yielded decoding accuracies well above chance
level (50%) for each ROI and participant sample (all p’s <0.05, per-
mutation tests, FDR corrected59). For details, see Table 4; for an illus-
tration, see Fig. 1c. The results demonstrate that all ROIs (identified in
DS) reliably decode social inferences across all three neurotypical
participant samples (and ASD, see below).

Second, we aimed to replicate our key finding from the DS group:
neural activation patterns for social inference in the right pSTS predict
variance in people’s number of social contacts. Matching results in DS,
neural response patterns in the right pSTS reliably predicted SNI
scores in RS1 (r =0.52 [−0.49, 0.48], R2 = 0.27, p =0.036) and RS2
(r =0.30 [−0.39, 0.28], R2 = 0.09, p =0.043, permutation tests; Fig. 2c).
For completeness, supplemental analyses confirmed that predictive
information was specific to activation patterns in the pSTS and did not
extend to other ROIs listed in Table 2 (all p’s > 0.14, FDR corrected). In
sum, we successfully replicated the key result: neural activation

Table 1 | Demographic information and summary scores of social functioning

Discovery sample (DS) Replication sample 1 (RS1) Replication sample 2 (RS2) Autism spectrum disorder
sample (ASD)

Sample size (total sample) 59 (60) 20 (20) 50 (55) 23 (25)

Age (M ± SD) 28.29 ± 5.21 [19,40] 28.45 ± 6.51 [21,46] 33.56 ± 7.28 [21,49] 27.52 ± 8.25 [18,48]

Sex (male/female) 33/26 13/6 31/19 17/6

IQ scores (WASI-II)

Full-scale IQ 108.14 ± 10.14 [90,132] 111.35 ± 9.20 [97,130] 105.92 ± 7.41 [93,127] 107.70 ± 15.40 [77,133]

Verbal comprehension index 108.91 ± 11 [87,135] 110.50 ± 12.32 [85,137] 107.48 ± 6.08 [97,120] 107.43 ± 16.53 [74,135]

Perceptual reasoning index 105.14 ± 10.94 [83,128] 110.15 ± 7.92 [87,121] 102.58 ± 9.93 [84,128] 107.04 ± 13.02 [74,127]

Social network metrics

Network size 16.68 ± 10.23 [3,57] 21.35 ± 13.88 [6,57] 13.42 ± 8.79 [0, 37] 13.96 ± 7.60 [4,31]

Network diversity 5.07 ± 1.63 [2,9] 4.94 ± 1.75 [1,9] 4.34 ± 1.66 [0, 8] 4.87 ± 1.79 [2,8]

Embedded networks 1.68 ± 1.59 [0, 7] 3.00± 2.29 [0, 8] 1.24 ± 1.15 [0, 4] 1.26 ± 1.14 [0, 4]

Autism quotient scores (AQ) 15.55 ± 2.73 [8,20] 13.35 ± 4.53 [6,22] - -

Social responsiveness scale (SRS-2) - - 50.44 ± 8.38 [38,67] -

Symptom severity scores in ASD

ADOS SA - - - 7.52 ± 1.50 [5,10]

ADOS RRB - - - 6.86 ± 2.51 [0, 10]

Mean ± standarddeviation [range], IQ intelligencequotient,WASI-IIWechsler AbbreviatedScales of Intelligence-II,ADOS autismdiagnostic observation schedule scores,ADOSSAsymptomseverity
in the social affect domain, ADOS RRB restricted, repetitive behavior domain, AQ Baron–Cohen Autism Quotient. Some entries are derived from incomplete data. Source data are provided as a
Source Data file.
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Fig. 2 | Neural prediction of real-world social functioning. a Violin plots of the
number of real-life social contacts (SNI scores of social network size) in the neu-
rotypical Discovery Sample (DS, n = 59), neurotypical Replication Samples 1 and 2
(RS1, n = 17; RS2, n = 50), and Autism Spectrum Disorder group (ASD, n = 23).
b Violin plots of autism-like traits in neurotypical samples (Autism Quotient, AQ in
DS [n = 59] and RS1 [n = 17]; Social Responsiveness Scale-2 in SRS-2, n = 50) and
autismsymptom severity in the social affective domain in theASDgroup (ADOS SA,
n = 21). Circles within violin plots represent participants; gray bars indicate the
25th–75th percentiles; box plot whiskers illustrate the minima and maxima; white
dots indicate the median. c Illustration of the match of predicted and actual
number of real-life social contacts (SNI, z scored) from brain activation in the right
pSTS (DS: r =0.46 [−0.38, 0.26], R2 = 0.21, p =0.004; RS1: r =0.52 [−0.49, 0.48],
R2 = 0.27, p =0.036; RS2: r =0.30 [−0.39, 0.28], R2 = 0.09, p =0.043; Pearson cor-
relations, p values derived from non-parametric permutation tests; leave-one-

participant-out-cross-validation). Solid lines indicate trend lines for each sample;
dashed lines are for reference and indicate the theoretical perfect correspondence
of values on both axes (predicted = real scores). d Neural prediction of autism-like
trait scores (Autism Quotient, AQ, z scored for comparability across behavioral
measures) in the community samples (DS, RS1) from activation patterns in the right
pSTS (r =0.29 [−0.34, 0.24], R2 = 0.09, p =0.021, Pearson correlation, permutation
test). e Neural activation patterns the pSTS from all three neurotypical samples
predict the number of social contacts (SNI scores, r =0.38 [−0.35, 0.35], R2 = 0.14,
p =0.037) and f symptom severity (ADOS SA scores) in the ASD group (r =0.60
[−0.36, 0.36], R2 = 0.36, p =0.001; Pearson correlations, permutation tests; cross-
sample prediction: train on data of all neurotypical individuals, test on data of the
ASD group). Higher ADOS SA scores indicate more severe symptoms in the social
affective domain. Source data are provided as a Source Data file.

Table 2 | Brain regions decoding social inferences in the why/how task in the DS group (whole-brain searchlight decoding)

Brain region Side k t MNI
x y z

pSTS (posterior superior temporal sulcus)/ TPJ (temporo-parietal junction)/ SMG
(supramarginal gyrus)

L 754 19.09 −46 −66 24

pSTS R 80 8.93 48 −62 22

DMPFC (dorsomedial prefrontal cortex) L 430 10.31 −8 60 26

DMPFC R 161 7.60 4 58 24

SFS (superior frontal sulcus) L 34 9.68 −30 20 50

DLPFC (dorsal lateral prefrontal cortex) L 232 8.99 −46 12 36

VLPFC (ventral lateral prefrontal cortex) L 84 6.42 −50 26 14

Results are reported at a statistical threshold of p < 0.05, FWE corrected at the voxel level for the whole brain (cluster threshold of five voxels); only peak activations of clusters are reported; L left
hemisphere, R right hemisphere, k cluster size in voxels, MNIMontreal Neurological Institute. Source data available on OSF (https://doi.org/10.17605/OSF.IO/RNT8S).
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patterns in pSTSduring social inferences predict individual differences
in people’s real-world number of social contacts across three neuro-
typical participant samples.

Supplemental analyses tested whether variance in the ability to
decode social inferences in thewhy/how taskacross participantsmight
be linked to variance in SNI scores. To this end, for each ROI, we
correlated participants’ ROI-wise decoding accuracies in the why/how
task with their SNI scores (separately for each participant sample). We
found that participant-specific decoding accuracies for social infer-
ences per se (see Fig. 1c for illustration) were not correlated with their
SNI scores (neither inDS, RS1, or RS2; all p’s > 0.31, FDR corrected59). In
other words, individuals for whom we could more accurately decode
social inferences in the fMRI why/how task were not necessarily par-
ticipants with more social contacts.

Additional post-hoc tests also examined whether conventional
univariate measures of brain responses in the why/how task—that
focus on estimated neural activity in single voxels rather than multi-
voxel activation patterns—reflect individual differences in the number
of social contacts (SNI scores). To this end, for every participant, we
estimated the averageunivariate activationduring social inferences for
each ROI (based on the contrast of [why—how] inferences from
participant-specific GLMs, see Methods). Correlations with SNI scores
did not yield significant results in the right pSTS or any other ROI (all
p’s > 0.31, FDR corrected59). These findings suggest that information
predictive of social function (like SNI scores) can be obtained from
distributed neural activations patterns, but not from proportionally
stronger—or weaker—overall univariate activation in these localized
brain areas during social inferences.

Domain-specificity of neural predictions of the number of social
contacts
Next, we tested whether the ability to predict the number of social
contacts is specific to social inference activations in the brain or
extends to neural markers obtained during nonsocial inferences. In
other words, if participants engage in inferences that are not primarily
social in nature, can we still predict variance in individuals’ SNI scores
from their brain data? To address this question, we conducted a sup-
plemental analysis of data from a nonsocial inference condition in the
why/how task we had collected for the RS1 and RS2 groups (the DS
group did not perform this control condition, Table 5). In this condi-
tion of the why/how task, participants made why/how inferences
regarding nonsocial stimuli (e.g., inferring that a rainstorm causes
water to pour out of a gutter vs. describing water pouring out of a

gutter)48. Importantly, these supplemental analyses did not yield sig-
nificant predictions of SNI scores for the right pSTS (RS1: r = −0.45
[−0.57, 0.47], R2 = 0.20; p =0.88; RS2: r = −0.17 [−0.38, 0.28], R2 = 0.03,
p =0.72). For completeness, we repeated the analysis for the other
ROIs, none of which was significant (all p’s > 0.23 in RS1 and RS2, FDR
corrected for each sample). Overall, these findings suggest that neural
information predictive of variability in metrics of social network size
(SNI scores) is specifically related to making social inferences rather
than general causal inferences.

Following up on evidence of domain-specificity, we also aimed to
predict behavioral indices that were not explicitly linked to the social
domain. More precisely, we repeated our neural decoding analysis
with one major difference: we predicted variance in participants’
intelligence scores instead of the number of social contacts (Full-Scale
IQ assessed in the WASI-II; see Methods) (Table 1). Neural activation
patterns in the pSTS obtained during social inferences did not predict
variance in IQ scores in DS, RS1, or RS2 (all p’s > 0.62). Complementary
tests for any of the other ROIs also yielded no significant predictions of
IQ scores (all p’s > 0.50, FDR corrected). This finding adds further
specificity and, together with our inability to predict SNI scores from
nonsocial inference activations in the brain, argues for discriminative
validity: neural responses designed to capture a social cognitive pro-
cess (social inferences) only predict aspects of social behavior.

Predictions of individual differences in AQ and social respon-
siveness scores
In this set of analyses, we examined whether the pattern of activation
during the why/how task might be predictive also of other behavioral
indices of interest in the social domain: autism-like traits in the general
population (AQ; Social Responsiveness Scales [SRS-2]). Specifically, in
two separate tests, we examined whether neural activation patterns in
the right pSTS obtained in the why/how task might also predict indi-
vidual differences in AQ questionnaire scores51 in DS and RS1 and
variance in SRS-2 scores52 in RS2. SRS-2 scores were chosen for our
second replication sample for two reasons: first, thismeasure has been
suggested to be preferable to the AQ for assessing the Broad Autism
Phenotype53. Second, significant predictions for variance in yet
anothermeasure of autism-like traits in the general population provide
further evidence that neural predictive information generalizes

Table 4 | ROI-wise decoding of social inference in the why/
how task in each participant sample

Regions of
interest (ROI)

Decoding accuracy [%]

Discovery
sample (DS)

Replication
sample 1 (RS1)

Replication
sample (RS2)

Autism spec-
trum disorder
sample (ASD)

L_pSTS 82 [31,69] 80 [36,65] 79 [36,64] 75 [38,62]

R_pSTS 69 [39,61] 61 [44,56] 70 [40,60] 60 [45,55]

L_DMPFC 74 [35,65] 75 [38,62] 74 [38,62] 71 [40,60]

R_DMPFC 66 [40,60] 66 [42,58] 70 [40,60] 64 [43,57]

L_SFS 63 [42,58] 71 [40,61] 69 [40,59] 66 [42,58]

L_DLPFC 74 [36,64] 68 [41,59] 75 [37,63] 68 [41,59]

L_VLPFC 69 [39,61] 65 [42,58] 69 [40,59] 63 [44,57]

All analyses pertain to the fixed set of regions of interest (ROIs) obtained from the DS group.
Thus, ROIs are completely independent of RS1, RS2, and ASD. ROI-wise decoding results for DS
are displayed for comparative purposes only. Values represent the averagepercentageof cross-
validated correct classification (decoding accuracy) of social inferences (why vs. how) based on
ROI-wise activation patterns in the why/how task in each sample (columns) and ROI (rows).
Values in brackets represent the 5th and 95th percentile of the empirical null distributions of
decoding accuracies achieved by chance (1000 folds). Neural activation patterns in each ROI
and participant sample predicted social inferences well above chance (permutation tests, allp’s
<0.05, FDR corrected), validating the ROI selection across samples. Source data are provided as
a Source Data file. R_pSTS/L_pSTS right and left posterior superior temporal sulcus, L_DMPFC/
R_DMPFC right and left dorsomedial prefrontal cortex, L_SFS left superior frontal sulcus,
L_DLPFC left dorsal lateral prefrontal cortex, L_VLPFC left ventral lateral prefrontal cortex.

Table 3 | Neural prediction of social network size scores in the
DS group

Region of Interest (ROI) Accuracy [5th, 95th] R2 P values

R_pSTS 0.46 * [−0.38, 0.26] 0.21 0.004 *

L_pSTS −0.03 [−0.29, 0.30] 0.0008 0.524

L_DMPFC −0.13 [−0.31, 0.39] 0.02 0.709

R_DMPFC 0.16 [−0.34, 0.26] 0.03 0.167

L_SFS 0.16 [−0.38, 0.25] 0.03 0.123

L_DLPFC −0.11 [−0.33, 0.28] 0.01 0.681

L_VLPFC −0.11 [−0.36, 0.30] 0.01 0.658

Prediction effect sizes (accuracy scores) are represented by Pearson correlation coefficients of
predicted and self-reported numbers of real-life social contacts (supplemental R square values
are also reported, error degrees of freedom =57). Upper and lower boundaries of prediction
accuracies achieved by chance (empirical null distributions) are displayed for each ROI [5th and
95th percentile]. Permutation tests assessed the statistical significance of the ROI-wise predic-
tion accuracies (P values). * indicates p values that survive FDR correction (p-adj = 0.028)

59,
controlling for the false discovery rate across multiple ROI-wise tests. L_/R_ left/right hemi-
sphere. ROIs available on OSF (https://doi.org/10.17605/OSF.IO/RNT8S). R_pSTS/L_pSTS right
and left posterior superior temporal sulcus, L_DMPFC/R_DMPFC right and left dorsomedial
prefrontal cortex, L_SFS left superior frontal sulcus, L_DLPFC left dorsal lateral prefrontal cortex,
L_VLPFC left ventral lateral prefrontal cortex.
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beyondmeasures of the number of social contacts (or AQ scores). The
implemented cross-validated analysis was identical to the one repor-
ted above for SNI scores, simply replacing these with AQ scores (col-
lapsed across DS and RS1) or SRS-2 scores in RS2 (Fig. 2b). Neural
activation patterns of social inference in the pSTS reliably predicted
AQ scores in DS and RS1 (r = 0.29 [−0.34, 0.24], R2 = 0.09, p = 0.021,
permutation test, Fig. 2d) and SRS-2 scores in RS2 (r =0.29 [-0.41,
0.28], R2 = 0.09, p =0.045, permutation test). Notably, AQ and SNI
scores were not correlated in DS and RS1 (r =0.16 [−0.06, 0.37],
p =0.15). This suggests that predictions of variance in autism-like traits
in neurotypical individuals are unlikely tomerely reflect covariation of
the behavioral scores of interest. Overall, the successful prediction of
variance in autism-like traits indicates that predictive neural informa-
tion in the right pSTS is not specifically related to SNI scores but
extends to other measures of human sociability in neurotypical
individuals.

Neural processing of social inferences in the why/how task
in ASD
This set of analyses aimed to extend the neural prediction of variance
in social network characteristics in a sample of high-functioning adults
diagnosed with ASD. First, as a sanity check, we confirmed that the
neural activation patterns obtained in the why/how task decoded
social inferences in theASDgroup for eachROI in Table 2 (allp’s <0.05,
FDR-corrected, ROI-wise permutation tests, Table4, Fig. 1c). This result
demonstrates that our ROIs—identified in the neurotypical DS group—
also contained information for decoding social inferences in the ASD
sample.

Second, we also explored whether the ROIs are equally informa-
tive about social inferences in the ASD group as they are in neuroty-
pical individuals. For each ROI, we compared the decoding accuracies
of social inferences in the why/how task between the ASD and the
matched RS1 groups (see Methods). Decoding accuracies for social
inferences did not significantly differ across the ASD and RS1 groups in
any ROI (two-sample t tests, all FDR corrected p’s > 0.12). We also
compared whole-brain accuracy maps of a searchlight decoding of
social inferences in the why/how task (ASD vs. RS1, two-sample t test at
the group level as implemented in SPM12). No brain area encoded
social inferences differently for the ASD group compared to the RS1
group (even at slightlymore liberal statistical thresholds ofp <0.001 at
the voxel level, p < 0.05 FWE corrected at the cluster level, as imple-
mented in SPM12). Together, these results suggest that local neural
information content about social inference processing in the why/how

task is not systematically diminished in ASD compared to matched
neurotypical individuals in RS1.

Third, supplemental analyses also tested whether ASD and RS1
groups use similar neural activation patterns to encode social infer-
ences in the why/how task. This was an important sanity check for our
cross-sample prediction of indices of social functioning (see below).
To explicitly test for sharedneural representations in thewhy/howtask
across both groups, we trained the classifier on the why/how data of
one group (ASD) and tested whether we could correctly identify social
inferences in the other group (RS1), and vice versa (two-fold cross-
validation, cross-sample decoding). For each ROI, we found that
response patterns obtained in one group predicted social inference
processing in the other group (p < 0.05, permutation tests, FDR cor-
rected) (Supplemental Table S7). This finding suggests that—at least
part of—the neural representation of social inference generalizes
between the ASD and the RS1 groups.

Taken together, the results of these sanity checks suggest that
ASD and a matched group of neurotypical individuals (RS1) recruit
similar brain regions during social inferences in thewhy/how task, with
matching levels of neural information content (as captured by
decoding accuracies), and—at least in part—shared activation patterns.
This pre-requisite, in turn, made possible the subsequent investigation
outlined below.

Prediction of number of social contacts and autism symptom
severity in ASD (SNI and ADOS SA scores)
So far, we have shown that neural activation patterns of social infer-
ence processing in the pSTS predict variance in SNI scores and autism-
like traits in neurotypical individuals. We next explored whether this
predictive information generalized to individuals in the autism group.
To this end, we used a cross-sample prediction approach: we trained
our model on data from all three neurotypical participant samples
(using neural activationpatterns in the pSTS as features and SNI scores
of 126 individuals as labels) and tested themodel on data from theASD
group (using pSTS response patterns and SNI scores of individuals
with autism). This approach is the most direct test of generalization of
predictive neural information between neurotypical and autism
groups. It also addresses potentialmethodological concerns related to
the smaller sample size in the ASD group (i.e., concerns of limited
training data in a leave-one-participant-out cross-validation approach
in a small participant sample). The cross-sample prediction analysis
allowed us to predict the number of social contacts in the ASD group
(r =0.38 [−0.35, 0.35], R2 = 0.14, p =0.037, permutation test, Fig. 2e),

Table 5 | Details of how the why/how task, fMRI data collection, and image preprocessing varied across participant samples

Discovery sample (DS) Replication sample
1 (RS1)

Autism spectrum
sample (ASD)

Replication sample 2 (RS2)

Why/how task

Nonsocial condition No Yes Yes Yes

Blocks per condition 4 6 6 6

Stimuli per block 8 8 8 9

Total runtime (min) 5:12 16:35 16:35 13:25

Source code https://github.com/spunt/
whyhowlocalizer104

https://osf.io/59cbe/ https://osf.io/59cbe/ https://github.com/adolphslab/
LOI2105

fMRI data acquisition

MR scanner TRIO TRIO TRIO PRISMA

MR EPI sequence Multi-band Single-band Single-band Multi-band

fMRI data preprocessing

Source code House code106 House code106 House code106 fMRIPrep 1.5.3 https://fmriprep.org/
en/stable/

ICA (independent
component analysis)

No No No Yes
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suggesting that—at least part of—the predictive information encoded
in the pSTS during social inferences generalizes from neurotypical
participant groups to the ASD group.

Next, we tested whether the neural information in pSTS gen-
eralizes to other behavioral indices of social functioning in the ASD
sample, namely symptom severity scores in the social domain (ADOS
SA scores). To this end, we repeated the cross-sample prediction
analysis with one difference:We replaced the SNI scores in the training
data (neurotypical) with participants’ autism-like trait scores and the
test data (ASD) with autism symptom severity scores. We found that
pSTS responses in neurotypical individuals predicted variance in aut-
ism symptom severity scores in the ASD sample (r =0.60 [−0.36, 0.36],
R2 = 0.36, p = 0.001, Fig. 2f). Note that ADOS SA scores and SNI scores
in the ASD group were not significantly correlated (r = 0.04 [−0.40,
0.46], p =0.86), indicating that positive predictions of autism symp-
tom severity in the social domain are not merely due to shared var-
iance between ADOS and SNI scores.

Supplementary post hoc tests examined the specificity of these
predictions for the social domain. We found that pSTS activation
patterns did not predict variance in repetitive behaviors in the ASD
group (ADOS RRB) (r = −0.23 [−0.35, 0.38], R2 = 0.05, p =0.83). Thus,
predictive information in the pSTS was specific for variance in symp-
tom severity in the social affective domain (ADOS SA). Next, we used
pSTS activation patterns obtained during nonsocial inferences in the
why/how task. Neither the prediction for SNI scores (r =0.30 [−0.34,
0.35], p = 0.92) nor ADOS-SA scores (r = −0.09 [−0.37, 0.37], p =0.63)
yielded significant results here. These results suggest that predictions
of SNI scores and autism symptom severity scores in the social affec-
tive domain in the ASD group might be specific to neural activation
patterns in the social domain (social inferences).

Discussion
We found that patterns of brain responses to social inferences mea-
sured in the laboratory predict individual differences in the number of
real-life social contactsmeasuredwith the SNI. This finding held across
four independent participant samples (DS, RS1, RS2, ASD)whenusing a
fixed set of functionally defined brain regions of interest (ROIs),
pointing to the robustness and generalizability of our key finding. The
number of social relationships measured with the SNI is a metric that
has received considerable attention in the literature, inbothbehavioral
and neuroimaging studies10–12,14,15,20,22–26,36,60. Our results directly link
peoples’ capacity to engage in a specific social cognitive process
(thinking about other people’s inner mental states) and individual
differences in real-world social behavior (yielding varying social net-
work sizes). We found remarkable specificity for a particular neuroa-
natomical region (the right pSTS). At the same time, our findings
generalized across multiple measures of individual differences in
social behavior (SNI scores, autism-like traits in neurotypical indivi-
duals in community samples (AQ, SRS-2), and autism severity scores
(ADOS SA)). We suggest that the patterns of neural activations in the
pSTS during social inference reflect an underlying latent variable that
comes into play relatively ubiquitously in real-life social behavior. Our
findings further argue that variability in the number of social rela-
tionships has a partly neural basis. Moreover, the results point to the
potential of using process-specific neural markers to characterize
individual differences in real-world social behavior.

Wepredicted thenumber of social contacts frombrain activations
during a laboratory task that required inferring other people’s mental
states (e.g., their feelings, thoughts, or intentions). Such social infer-
ential processing is often referred to as “mentalizing” or “theory of
mind”29,61,62, encompassing a rather broad collection of different
abilities44,63 and recruiting a network ofmultiple brain regions41–43. Our
present findings provide considerable further specificity on how these
processes are associated with social behavior. Notably, we found high
neuroanatomical specificity: while multiple brain regions decoded

social inferences in the why/how task (Table 2), information that was
predictive of variance in the number of social contacts (as well autism-
like traits) was exclusively localized to the right pSTS (Table 3). The
anatomical specificity of our predictions suggests that different nodes
of the brain network recruited during social inferences might imple-
ment distinct mental computations, and only the computations in the
pSTS generalize to indices of social functioning tested in our study.
Our analyses shed light on the nature of the predictive neural com-
putations in the pSTS: brain responses obtained during why/how
inferences for nonsocial stimuli (e.g., related to extreme weather
phenomena) did not predict the number of social contacts, autism-like
traits in neurotypical individuals, or symptom severity in our autism
group. Thisfinding suggests that informationpredictive of the number
of social contacts is not coming fromdomain-general computations of
making high-level inferences, but specifically from inferences about
other people’s mental states. These findings fit emerging evidence for
the range of social processes subserved by the STS. In particular, there
is an anterior-to-posterior organization that localizes processes ran-
ging, respectively, from language to voices to faces to biological
motion to theory-of-mind64,65. The region we found in our study, the
very posterior STS, corresponds to the one most specifically imple-
mented in abstract social inferences65 (Figure S2a). Finally, neural
activation patterns for social inferences in the why/how task did not
predict variance in people’s cognitive functioning that was not
necessarily social in nature, such as intelligence scores or symptom
severity regarding restrictive and repetitive behaviors in the ASD
group (ADOS RRB scores). This finding further supports the notion of
the high specificity of our neural prediction to differences in people’s
social behavior: neural responses capturing a social cognitive process
(social inferences) only predict aspects of social behavior, arguing for
discriminant validity. Overall, our results demonstrate the potential of
using process-specific, localized neurobiomarkersof cognitive abilities
that contribute to social behavior as robust predictors of people’s
social functioning in the real world.

At the same time, we demonstrated that predictive neural infor-
mation generalizes to other indices of people’s social functioning.
Specifically, we could also predict variance in autism-like traits in the
general population (AQ and SRS-2 scores) and autistic social symptom
severity in the ASD group (ADOS SA scores). This generalizability is
especially important given that our primarymeasure of social network
size, the SNI score, is based on self-reports. The ADOS SA scores, by
contrast, are based on observer ratings of behavior, arguing that our
findings are not merely driven by response biases on questionnaires.
The convergence of associations we found, and the fact that they
pertain specifically to the activation patterns produced by social
inference processes, go well beyond prior findings based on resting-
state or structural MRI data. They also raise the important question of
what exactly drives our findings. Although we have previously argued
for caution in studies that claim to find associations between the SNI
and brain structure13, variance in brain structure in the right pSTS
(namely gray matter density) has previously been linked to variance in
the number of friends on online social network services12. Predictions
of indices of social behavior unrelated tometrics of social network size
point to the intriguing possibility that social inference activation in the
pSTS reflects a latent variable that predicts individual differences in
social functioning quite broadly (such as AQ and SRS-2 scores, ADOS
SA severity scores, and the number of social contacts). It remains an
open question how far this generalizability would extend, e.g., tomore
sophisticated metrics of social networks such as social network posi-
tion, characteristics of social ties or social distance22,66,67, or even other
social behaviors known to activate similar brain regions of the pSTS
such as altruistic behavior35,56 (see Figure S2b for illustration of over-
lap). Multi-trait-multi-method approaches (MTMM)68 might be well
suited to address these future questions, shedding further light on the
underlying latent variable that we propose and on how the cognitive
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processes engaged could be causally related to social connectedness
and everyday social functioning.

Another key question about generalizability is whether our find-
ings would extend to different participant samples, specifically ones
not necessarily representative of the discovery sample, either in terms
of predictor variables (i.e., the cognitive process of interest or its
neural signature in the brain), the dependent variable (i.e., markers of
real-world social functioning and connectedness), or both. We expli-
citly tested the generalizability of our findings in a sample of high-
functioning individuals with autism. Marked deficits in social interac-
tion and specifically in understanding other people’s mental states are
a hallmark of ASD39. Yet, we found that brain responses of social
inference measured in the lab predict the number of social contacts,
and metrics of autism symptomatology in the social domain (ADOS
SA). Notably, the successful predictivemodel was trained on data from
neurotypical individuals. This approach is the most direct test of
generalization of predictive neural information between neurotypical
and ASD groups. Our results point toward a generic component of
information encoded in activation patterns pSTS that is shared across
neurotypical and the ASD sample. Overall, the findings suggest that
neural predictions of social behavior extend to individuals in non-
representative samples with atypical behavior in the social domain.

Evidence of successful cross-sample predictions of social func-
tioning in ASD has important practical implications: limited sample
sizes in special interest groups or clinical populations are common,
highlighting the broad appeal of using neurotypical groups—that are
often easier to recruit and test—to train predictive models of interest.
Moreover, on a conceptual level, our results support the idea that
social inference abilities are continuously distributed across neuroty-
pical individuals drawn from a community sample and neurodiverse
individuals with ASD. Instead of a categorically defined condition, ASD
can be viewed as one end of a continuous distribution of core com-
petencies and/or deficits that occur in nature69 (but see ref. 70). Our
findings across neurotypical and ASD groups support an under-
standing of the core feature of problems with social interactions of
ASD as a quantitative trait rather than a categorically defined
condition69, with implications for diagnostic classification. Our find-
ings also suggest that neural activations to social inference could be
incorporated into developing biomarkers for ASD, offering avenues
for diagnosis and mechanistically targeted treatments71. Biomarkers
for autism are scarce, partly due to the heterogeneity in phenotypes
and difficulties in identifying “biological tests” to predict treatment
responses72. Neural measures of atypical cognitive processes, such as
the ones we feature in this study, hold the promise of predictive bio-
markers sensitive to quantitative variations in core features of ASD.

While reliable across four participant samples, some limitations
and open questions need highlighting. For instance, our results remain
limited by small sample sizes, reducing our power to detect possible
effects in this study. Thus, the lack of prediction from ROIs other than
the right pSTS may have resulted partly from small sample sizes.
Future replications in much larger samples that test hundreds or
thousands of individuals will be necessary to establish the likelihoodof
any negative findings further. Likewise, while our results show a link
between social inferences and social network characteristics, they
can’t speak to variance in other social behaviors (e.g., normative
choices73 or expressions of prosocial phenotypes74–76).

Another important open question concerns the trajectories of
neural prediction of social network characteristics over time. ASD is a
neurodevelopmental disorder that arises early in life, raising the
question of how the predictive information of our identified neural
markers changes across the lifespan. Do these markers characterize
social deficitswhen they arefirst displayed?Can theypredict symptom
severity later in life or identify subgroups of young children likely to
respond to treatments targeting socio-cognitive processing? Likewise,
in neurotypical individuals in the general population, social network

characteristics change over time. Longitudinal studies will be neces-
sary to assess the predictive value of functional neural markers across
time. It will be interesting in this respect also to investigate the effects
of training people’s social skills77,78 to see how the relationshipbetween
neural markers and social networks can be modified.

These considerations raise the perhaps most challenging
question about interpreting our findings: their causal relation. Do
social inference skills, as indexed in pSTS activation patterns, cause
real-world social behavior that influences social network size? Or do
people with larger social networks and more social contacts in daily
lives develop better social inference skills? In general, it is surpris-
ing that there should be any substantial relation at all since social
networks are influenced by many factors in life that appear inde-
pendent of social inference skills (moving to a new location, time
available to socialize, type of job, etc.). The only clear evidence for a
causal relationship currently comes from studies in Macaques
where social membership to groups of variable size could be
experimentally assigned79. Living in larger social groups caused
changes in brain structures as measured in increased gray matter
volume and changes in brain function in non-human primates79.
Positive correlations between amonkey’s social rank within a group
and neuroanatomical markers support the notion that social
structure is associatedwith neural measures. However, these results
leave unclear the precise cognitive processes mediating between
the two. This evidence would argue that the vagaries of life cir-
cumstances causemembership in a particular social group, and this,
in turn, causes changes in the neural substrates of social cognition.
More in-depth characterization of people’s life variables in a long-
itudinal design could shed further light on these intriguing
questions.

It is implausible that the pattern of brain activation and SNI scores
we observed in our study are directly causally related. After all, while
we acquired neuroimaging data, participants were neither filling out
SNI questionnaires nor otherwise instructed to think about their
friends or social networks. So what could explain the reliable asso-
ciation that we found? An alternative possibility is that both brain
activation patterns and the number of real-world social relationships
measured by SNI scores are caused by a shared latent variable: the
social cognitive processes engaged during our activation task. Con-
sidering the task conditions that elicit the rawdata that constituted the
predictive multivoxel activation patterns, we propose that it is pre-
cisely the intended social inference process that constitutes the latent
variable in question. Participants are thinking about other people’s
mental states and the intentions responsible for the actions depicted in
the stimuli, and it is such mental state attribution that is causally
related to establishing larger numbers of social relationships (as
indexed with the SNI).

This hypothesis is supported by the relationship we found with
SRS, AQ, and ADOS severity scores, particularly by the fact that AQ
scores are not themselves correlated with SNI scores. Instead, these
two metrics of social functioning (autism-like traits as captured in AQ
and SNI) are independently associated with brain activation patterns.
Our interpretation is that social inference must itself be comprised of
multiple cognitive sub-processes, distinct sets of which are causally
related to different consequences in the social world: autism-like traits
and SNI. Although it is known that social inference is not
monolithic44,63, this still leaves open considerable detail to be investi-
gated. The anatomical specificity we found will be particularly infor-
mative in further dissecting this issue in future studies. For instance,
our prior work has shown that social inference activation can be cor-
related with social curiosity or attributional complexity skill—but in
this instance, the effectwas foundonly in thedmPFC, not in thepSTS48.
Our findings emphasize the pSTS as one node in the social cognition
network whose variable activation patterns are a promisingmarker for
social functioning in the real world.
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Method
Participants
The study reports data from four participant samples: the discovery
sample (DS, n = 60) and two replication samples (RS1: n = 20; RS2:
n = 55) of neurotypical volunteers from the Los Angeles metropolitan
and the group of high-functioning individuals diagnosed with autism
spectrum disorder (ASD, n = 25) (see Table 1). Individuals in the RS1
group were age-, sex- and IQ-matched to individuals in the ASD group
to allow for a matched comparison of neural activation of social
inferences (why/how task) across groups. All participants in the ASD
group had a prior clinical diagnosis of autism spectrum disorder,
which was confirmed by revised algorithm scores on the Autism
Diagnostic Observation Schedule (ADOS), Module 4. All participants
(DS, RS1, RS2, ASD) participated in a version of the why/how fMRI task
(Table 5) and a separate behavioral session in exchange for financial
compensation ($20/h). All participants were right-handed, had a nor-
mal or corrected-to-normal vision, spoke English fluently, and had IQ
scores in the normal range (as assessed using the Wechsler Abbre-
viated Scales of Intelligence-II; FSIQ, Table 1). Sex at birth was assessed
using self-reports (see Table 1; source data are also reported in a de-
identified form on OSF, https://doi.org/10.17605/OSF.IO/RNT8S). Sex
differences were not hypothesized for the current research question.
We excluded data from one participant in the DS group and one par-
ticipant in the RS2 group due to poor performance in the why/how
fMRI task (no responses to > 70% of trials).We excluded data from two
individuals in the ASD group due to artifacts in the fMRI data. We
excluded data from one participant in RS2 due to an SNI score of 106
that exceeded three standard deviations above the group average
(Table 1) and another three individuals in the RS2 group due to
excessive motion during the why/how task. Motion outliers at the
individual level were identified and excluded based on the approach
described in ref. 80,81, which uses low-pass filtering to control false
rejections associated with respiration and pseudo-motion signals
present in short repetition timemulti-band EPI sequences. The six rigid
body motion parameters estimated during pre-preprocessing were
low-passfiltered temporally using afifth-order Butterworthfilterwith a
critical frequency of 0.2 Hz. Following filtering, the framewise dis-
placement (FD) time series were calculated82 for each participant.
Participants with unusually highmotionwere identified from the set of
individual 50th and 95th percentile frame-wise displacement (FD) values
using the DBSCAN clustering algorithm83 implemented by scikit-
learn84. All participants provided written informed consent according
to a protocol approved by the Institutional Review Board of the Cali-
fornia Institute of Technology (#12−0343).

Behavioral indices of social functioning
Social network characteristics (number of social contacts, SNI): We
measured participants’ social network characteristics using the
SNI4,15,26. The questionnaire assesses howmany people participants see
or talk to regularly in 12 types of social relationships, including family,
friends, workmates, neighbors, religious groups, etc. (for a complete
list, see http://www.midss.org/content/social-network-index-sni). Our
core measure of interest, the estimated number of social contacts,
refers to the total number of people with whom the respondent has
regular contact at least once every twoweeks, regardless of the type of
social role involved. While not the focus of our study, the SNI also
yields two additional scores: network diversity (number of unique
social roles inwhich the participant regularly interacts with at least one
other person) and number of embedded networks (number of differ-
ent network domains in which a respondent is active).

Autism-like traits in neurotypical individuals in DS, RS1, and RS2
(AQ and SRS-2): Within the general population, autism-like traits have
been proposed to be continuously distributed52. We measured var-
iance in autism-like traits using theAQ85 (AutismSpectrumQuotient; in
DS, RS1) and Social Responsiveness Scale-252 (SRS-2; in RS2). Both the

AQ and SRS-2 have self-report versions used to screen for ASD in
adults.

TheAutismSpectrumQuotient (AQ) is a self-report survey used to
screen for autism spectrum traits in adults with normal-range intelli-
gence (https://www.autismresearchcentre.com/arc_tests). It is com-
prised of 50 items scored using a 4-point Likert scale to indicate how
strongly an individual agrees or disagrees with each statement (e.g., “I
find it difficult to work out people’s intentions”; “I find myself drawn
more strongly to people than to things”). Scores at or above 32 are a
strong indicator that autism symptoms are present. Note, however,
that AQ scores are not designed for diagnostic purposes.

The Social Responsiveness Scale-2 (SRS-2), Adult Form, Self-
Report is a 65-item questionnaire that assesses social deficits asso-
ciated with autism spectrum disorder. It is sensitive to mild forms of
impairment in individuals who do not meet the criteria for an autism
diagnosis, as well as to variance in the severity of deficits among
individuals with ASD. We have collected the SRS-2 for our second
neurotypical replication sample (RS2) as the SRS-2 has been suggested
to be preferable to the AQ for assessing the Broad Autism Phenotype53.
It also allowed assessing if our results could be replicated using yet
another behavioral measure of variance in atypical social processing
associated with autism.

Symptom severity scores in ASD (ADOS SA): ADOS SA scores
served as a quantitative, continuous measure of autistic symptom
severity in the social affective domain in the ASD group. The Autism
Diagnostic Observation Schedule, 2nd Edition (ADOS-286), is a stan-
dardized observational diagnostic measure. ADOS-2 Module 4,
designed for verbally fluent adolescents and adults, was administered
to all participants with a prior diagnosis of ASD or clinically significant
social skills deficits (i.e., social skills deficits that required clinical
treatment in the PEERSprogramatUCLA; https://www.semel.ucla.edu/
peers/young-adults). Following the ADOS-2 protocol, a clinically
trained examiner engaged each participant in a series of standardized
discussions and tasks and rated specific aspects of participant’s com-
munication and social behavior on a scale from0 (no abnormality) to 3
(severe abnormality). The revised diagnostic algorithm55 was used to
score the presence of autistic behaviors in the Social Affect (SA)
domain and Restrictive and Repetitive Behaviors (RRB). The ADOS SA
score provides a classification of autism spectrum disorder or non-
spectrum, with a sensitivity of 89% and specificity of 72.2%. The algo-
rithm scores were then converted to a calibrated measure of severity,
which provides a continuous, quantitative index of social-
communication (SA) and restricted and repetitive behaviors (RRB)
extending beyond the diagnostic categorization of autism54. Given our
focus on indices of social functioning, the analyses focused on ADOS
SA scores.

Functional brain markers of social inference: why/how
task (fMRI)
To assess functional neural markers of social inference processing,
participants in the DS performed an established why/how social
inference task47,48 during fMRI data acquisition (see Table 5 for the
hyperlink to source code). The task uses a 2 (inference: why, how) × 2
(target stimuli: faces, hands) factorial design implemented in pseudo-
randomized blocks (4 blocks per condition). Each task block consists
of a series of 8 images that display social targets in the form of emo-
tional facial expressions (faces) or intentional hand actions (hands)
(Fig. 1a). Each image requires a speeded judgment (yes/no), entailing
either social inferences about others’ internal states (“why?”; high level
of inference, e.g., “Is the person helping someone?”) or factual infer-
ences about the observedbehavior (“how?”; low level of inference, e.g.,
“Is the person looking to their side?”). Table S3 presents a complete list
of block-specific questions. Each image is presented twice, once per
inference condition. A brief verbal cue (e.g., “helping?”) presented
prior to every target image after the first minimizes working memory
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demands. Participants had a maximum of 1750 ms to respond before
the presentation of the next image. Once an answer was given, the task
immediately advanced. Block onsets were fixed across participants.
The order and onsets of trials were optimized to maximize the effi-
ciency of separately estimating the contrast of interest [why > how] for
each of the two target categories. In addition, the order of why
and how blocks were counterbalanced within each target category.
The order of trials was achieved by using open-source fMRI
design optimization software (https://zenodo.org/record/58616#.
W5muJWaUnbk) to generate one million pseudo-random designs
and for each summing the efficiencies of the contrasts of interest. The
most efficient design for each task was retained and used for all par-
ticipants. Stimulus presentation and response recording used the
Psychophysics Toolbox PTB 3.0.13–3.0.1687. An LCD projector was
used to present the task on a screen at the rear of the scanner bore that
was visible to participants through a mirror positioned on the head
coil. Participants were given a button box and made their responses
using their right-hand index and middle fingers.

Performance in the why/how task was assessed as follows: for
each participant, we computedmeasures ofmean percent accuracy, d’
and response time (RT) for the four conditions (inference [why, how] ×
targets [faces, hands]). We omitted rare trials with no response
(mean= 0.46%, max= 3.91%, across participants). To address negative
skewness, accuracy scores were subjected to a Box–Cox transforma-
tion before undergoing statistical testing88. Mean RTs were computed
after excluding values greater than three SDs from the mean. Table S2
reports group-level descriptive statistics.

The version of the why/how social inference task performed by
participants in the RS1, RS2, and ASD groups differed in several ways
from the one introduced above. These differences were motivated by
the specificquestions being investigated in the larger study forwhich it
was designed. First, and most importantly, in addition to social target
stimuli (hands, faces; Fig. 1a), modified task versions featured a third
stimulus category showing the effects of nonsocial processes (e.g.,
scenes showing the consequences of extremeweather) (for details, see
ref. 48). Matching the social stimulus conditions (faces, hands), each
nonsocial stimuluswas presented twice, requiring either a high level of
inference (“why?”) or a low-level inference based on facts displayed in
the picture (“how?”). Note that data from this nonsocial control con-
dition was outside of the focus of the current study and was only
analyzed for post hoc analyses that examined the specificity of the
neural prediction of social functioning (e.g., number of social contacts)
for making inferences about other people’s inner mental states. Sec-
ond, task versions differed regarding the number of trials per block
and the number of blocks (Table 5). Third, block-specific questions
differed slightly (Table S3). Fourth, there wereminor differences in the
timing of the trial elements within each block and with the average
stimulus onset asynchrony48 (see Table 5 for further details and
hyperlink to source code).

Functional image acquisition (fMRI)
All imaging data were acquired at the Caltech Brain Imaging Center.
Imaging data of DS, RS1, and ASD were collected using a Siemens Trio
3.0 Tesla MRI scanner outfitted with a 32-channel phased-array head
coil. For theDS,weacquired 304whole-brainT2*-weighted echoplanar
image volumes (EPIs; voxel resolution = 2.5 × 2.5 × 2.5mm3, 56 slices,
TR = 1000ms, TE = 30ms, flip angle = 60°, FOV = 200mm, interleaved
acquisition order, multi-band acceleration factor = 4) for the why/how
social inference task. For the RS1 and ASD groups, whole-brain T2*-
weighted EPI volumes for the why/how task were acquired with the
following MR protocol: voxel resolution = 3 × 3 × 3mm3, 47 slices,
TR = 2500ms, TE = 30ms, flip angle = 85°, FOV = 192mm, ascending
acquisition order. For RS2, imaging data were collected at Siemens 3.0
Tesla MAGNETOM Prisma.Fit MRI scanner outfitted with a 32-channel
phased-array head coil. For RS2, we acquired 1080 whole-brain T2*-

weighted EPI volumes with the following parameters: TR = 700ms,
TE = 30ms, 60 contiguous oblique transverse slices, slice pitch 20
degrees, 2.5mm isotropic voxel size, multi-band acceleration = 6,
interleaved slice acquisition order, flip angle = 53 degrees. A pair of
spin echo EPI volumes (TR = 5500ms, TE = 48ms, and multi-band
acceleration = 1) with opposing phase encoding polarity were acquired
for geometric distortion correction with identical geometry and EPI
echo spacing to the T2*-weighted EPI volumes. Participants’ in-scan
head motion was minimal (max translation = 2.78mm, max rotation =
1.88°), and movement parameters were comparable for RS1 and ASDs
(no significant between-group difference in frame-to-frame displace-
ment or frame-to-frame rotations as measures of participant motion
most likely to cause artifactual BOLD signal correlations; unpaired t
tests, p’s > 0.17, uncorrected). For all participants, we also acquired a
high-resolution anatomical T1-weighted image (1mm isotropic) and
field maps used to estimate and correct for inhomogeneity-induced
image distortion.

Image preprocessing (fMRI data analysis)
Images in three participant samples (DS, RS1, ASD) were processed
primarily using Statistical Parametric Mapping (SPM12, http://www.fil.
ion.ucl.ac.uk/spm) together with house code (see Table 5 for the
hyperlinks). Prior to statistical analysis, functional imaging data were
subjected to the following preprocessing steps: (1) the first four EPI
volumes were discarded to account for T1-equilibration effects; (2)
slice-timing correction was applied; (3) the realign and unwarp pro-
cedure was used to perform distortion correction and concurrent
motion correction; (4) the participants’ T1 structural volume was co-
registered to the mean of the corrected EPI volumes; (5) the group-
wise DARTEL registration method included in SPM1289 was used to
normalize the T1 structural volume to a commongroup-specific space,
with subsequent affine registration to Montreal Neurological Institute
(MNI) space; (6) all EPI volumes were normalized to MNI space using
the deformation flow fields generated in the previous step, which
simultaneously re-sampled volumes to 2mm isotropic, (7) and
smoothed using a Gaussian kernel of 6mm isotropic, full width at half
maximum (FWHM).

Images in RS2 were obtained after a major update of the MR
scanner and were preprocessed using the open-source fMRIPrep 1.5.3
analysis pipeline90, which utilizes a combination of tools from well-
known software packages (see Table 5 for hyperlink). FMRIPrep is
designed to provide an easily accessible, standardized, state-of-the-art
fMRI data preprocessing pipeline that is robust (e.g., to variations in-
scan acquisition protocols) and requires minimal user input. An
extensive description of the analysis steps is provided in the boiler-
plate that fMRIPrep generates for every participant processed (Meth-
ods S1).

GLM: block-wise estimates of social (‘why?’) and factual (‘how?’)
inferences in the why/how fMRI task
For each participant, a general linear model (GLM) estimated regres-
sors of interest for each block of the why/how task. Blocks were
defined by the onset of the first target image and the offset of the final
image of the block91. The GLM included as covariates of no interest the
six motion parameters estimated from image realignment and a pre-
dictor for every time pointwhere the in-brain frame-wise signal change
(calculated as the root mean square derivate, or DVARS) exceeded 2.5
SDs of the mean DVARS across the time series or where frame-wise
displacement exceeded 0.5mm of translation or 0.5° of rotation92.
Note that participant-wise GLMs in RS2 only included as covariates of
no interest the six motion parameters estimated from image realign-
ment due to differences in the preprocessing pipeline in this sample
(Table 5,Methods S1). The hemodynamic responsewasmodeled using
the canonical (double-gamma) response function and a 1/100Hz high-
pass cutoff filter to eliminate low-frequency drifts in data. GLMs were
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estimated using the SPM12 RobustWLS toolbox, which implements the
robust weighted least-squares estimation algorithm93. Estimated
responses for the block-wise regressors of interest (i.e., ‘why’ and ‘how’
inference task blocks) were used as inputs for the multivariate classi-
fication of ‘why’ vs. ‘how’ inferences to identify (DS) or confirm
(RS1, RS2, ASD) brain regions that decode social inferences in the why/
how task (described below). Moreover, for each participant, we
estimated one contrast image based on regressors of
interest in conditions that included social stimuli ([why face-blocks AND
why hand-blocks]—[how face-blocks AND how hand-blocks]). These participant-
specific contrast images were used as inputs for the multivariate
regression analyses to predict variance in participants’ number of
social contacts (SNI scores) (and other behavioral indices of interest
such as AQ, SRS-2, or ADOS SA scores). For each participant, we also
estimated one matching contrast image for the nonsocial control
condition [why nonsocial—how nonsocial]. Note that this contrast was only
estimated for participant samples for which the nonsocial task con-
dition was available (Table 5). These participant-wise contrast images
were used as input for the post-hoc multivariate regression analysis
that probed the social specificity of our neural predictions.

Identifying ROIs of social inference processing in the why/how
task in DS
In the first step, we identified brain regions that are reliably engaged
during social inference processing in neurotypical individuals in theDS
group.More precisely, this initial analysis aimed to identifymulti-voxel
activation patterns in the brain that decode social (versus factual)
inferences in the why/how task (i.e., why versus how task blocks). To
this end, we used a linear support vector machine classifier (libSVM,
http://www.csie.ntu.edu.tw/~cjlin/libsvm) in combination with a stan-
dard whole-brain searchlight approach49,94,95 implemented in MATLAB
2021a). This approach has been used in various domains of cognitive
and social neuroscience95–97. This data-driven approach does not
depend on a priori assumptions about informative brain regions and
ensures unbiased information mapping throughout the whole brain.

For each participant, we defined a sphere with a radius of four
voxels around a given voxel vi of themeasuredbrain volume56,98–100.We
extracted the parameter estimates of the N voxels within this sphere
from the block-wise regressors of interest from the GLM (see above).
The resulting N-dimensional pattern vectors were created separately
for each block and condition of the why/how task (inferences [why,
how] × target [hands, faces]). We then trained a linear kernel support
vector machine classifier to distinguish neural pattern vectors asso-
ciated with either social or factual inferences (why versus how; fixed
cost parameter c = 1). Training data consisted of all but one neural
pattern vector of a particular inference condition obtained for the
participant (i.e., leave-two-blocks-out cross-validation; left-out-data:
neural pattern vectors for one why block and one how block). The
resulting model provided the basis for the prediction of the inference
condition of the two left-out task blocks (test data) solely based on
their neural pattern vectors. This procedure was repeated several
times, always using pattern vectors of a different task block as test
data. Predictive information was defined as the average percentage of
correct classification of the inference condition and was assigned to
the central voxel of the searchlight sphere. This approach was repe-
ated for every voxel of the measured brain volume, yielding a three-
dimensional decoding accuracymap for every participant. Participant-
specific accuracy maps were then used in a random effect group
analysis for DS (single t-test as implemented in SPM12) and tested
against chance level (50% in this binary classification) (p <0.05, FWE
corrected at the voxel level for the whole brain volume as imple-
mented in SPM12). To identify response patterns that decoded
engagement in social inferences independent of the social stimulus
triggering this process, we implemented the decoding analysis sepa-
rately for each target condition of the why/how task (i.e., faces and

hands, Fig. 1a, Table S4 andTable S5). This also allowedus to verify that
faces and intentional hand actions elicited common inference pro-
cesses in the brain101. At the group level, we then identified brain
regions that decoded social inference across both target conditions,
using the implicit masking function in SPM12 (p <0.05, FWE corrected
at the voxel level for the whole brain, cluster threshold of five voxels).
The resulting clusterswere defined as regions of interest (ROIs) for the
multivariate prediction of individual differences in social network
characteristics (see below) for all four participant samples. Focusing
on a fixed set of brain areas identified in DS minimizes the risk of
circular analysis (i.e., double dipping)57 and producing false positive
results in the remaining three participant samples (RS1, RS2, ASD).

Confirming ROIs of social inference processing in the why/how
task in RS1, RS2, and ASD
For each ROI, we tested if neural activation patterns decoded social
inferences in the why/how task in RS1, RS2, and ASD, respectively. The
sanity check used the following analysis steps: for every ROI, we
separately carried out a decoding analysis of social inference (why
versus how) for data of the why/how task (separately for individuals in
RS1, RS2, andASD). This analysis conceptuallymatched the searchlight
decoding analysis implemented in DS with one major difference:
neural activation patterns were extracted from a particular ROI iden-
tified in DS (not a spherical searchlight cluster). Non-parametric per-
mutation tests assessed the statistical significance of average ROI-wise
decoding accuracies for each participant sample. Actual decoding
accuracies for the group were compared to accuracies of an empirical
null distribution (realized by randomly permuting the pairing of par-
ticipants’ neural pattern vectors and the binary label coding for the
inferencecondition,fixedpermutation order acrossparticipants, 1000
permutations). Only predictions above the 95th percentile of null
distributions were considered statistically significant102. For each par-
ticipant sample, we used the fdr_hr function in MATLAB R2021a to
apply FDR correction59 across the family of ROI-wise statistical tests.
Permutation testswerenot used in thewhole brain searchlight analysis
in DS (see above) due to the computational costs associated with the
high number of searchlights (~250,000) compared to the seven ROIs.

Neural prediction of individual differences in the number of
social contacts
Having identifiedmulti-voxel activation patterns that reliably decoded
social inference processing, we proceeded to the key question of the
study: can we use functional neural markers of social inferences to
predict individual differences in social network characteristics? To
address this question, we ran a support vector regression (SVR) ana-
lysis of an individual’s SNI scores (labels) and the participant’s ROI-
based brain responses in the why/how task (features).

First, we describe the cross-participant prediction in neurotypical
groups. For each ROI (Table 2), we performed the following analysis
steps: for every participant, we extracted parameter estimates for all
voxels in an ROI (Fig. 1b) from the contrast image of individuals’ GLM
([why face blocks ANDwhy hand blocks]—[how face-blocks ANDhowhand-blocks]).
The resulting neural pattern vectors (one per participant) were used as
input features for the prediction, and the participant’s number of social
contacts (SNI scores) served as labels (z-scored for all individualswithin
a participant sample). To implement the multi-voxel SVR, we used a
linear ν-SVR in LIBSVM (a popular library for support vector machines
that has gained wide popularity in machine learning and many other
areas) in MATLAB R2021a. We used a fixed cost parameter c = 1 and a
leave-one-participant-out approach. For example, for the discovery
sample DS, this approach yielded a 59-fold cross-validation: training
wasbasedondata from58participants (trainingdata).We then tested if
the model could predict the SNI score of the remaining participant
solely based on this participant’s ROI-specific neural activation pattern
(test data). ROI-specific prediction accuracies reflect correlations of the
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observed and predicted social network score across participants of
each participant sample35,56,99. Permutation tests assessed the statistical
significance of the prediction by comparisons to the empirical null
distribution estimated for this ROI and sample (realized by randomly
permuting the pairing of participants’ neural pattern vectors and
behavioral SNI scores 1000 times). Only predictions above the 95th
percentile of null distributions102 that survived FDR correction across
the seven ROIs59 were considered statistically significant for partici-
pants in DS. FDR correction was implemented using the fdr_hr function
in MATLAB R2021a. These analysis steps were repeated for data from
theRS1 andRS2groups, aswell as for other indices of social functioning
such as AQ, SRS-2, and WASI-II IQ scores. ROIs were identical across all
four participant samples to explicitly test the generalizability of our
findings in DS to data from other participant samples.

Next, we testedwhether predictive neural information generalizes
from neurotypical participant samples to individuals in the ASD group.
To this end, we used a cross-sample approach to predict SNI scores
(number of social contacts) and symptom severity in the ASD group.
The analysis approach matched the cross-participant prediction
described above with one significant difference: we trained our model
on data from all three neurotypical participant samples (using
participant-wise activation pattern vectors from the right pSTS of 126
individuals as features and their SNI scores as labels) and tested the
model on data of the ASD group (using pSTS-wise activation pattern
vectors of 23 individuals as features and their SNI scores as labels). Both
training and test data were standardized (separately for each sample)
using the z-score function in MATLAB R2021a to account for differ-
ences in the feature space across samples (e.g., due to differences in
the scanner, acquisition protocol, and preprocessing of fMRI data,
Table 5). Likewise, behavioral scores were standardized (z-scored) to
account for differences in behavioral measures across samples (e.g.,
scales of autism-like measures in neurotypical samples and ADOS
scores in the ASD group, see below). This cross-sample prediction
approach is the most direct test of generalization of predictive neural
information betweenneurotypical and autismgroups. It also addresses
potential methodological concerns related to the smaller sample size
in theASDgroup (i.e., concerns of limited trainingdata in an alternative
leave-one-participant-out cross-validation analysis approach in the
ASD group). Permutation tests assessed the statistical significance of
predictions. These analysis steps were repeated for the neural predic-
tion of autism symptom severity in ASD (ADOS SA scores).

Statistics and reproducibility
The DS, replication sample 1 (RS1), and autism sample (ASD) were
based on existing data (DS = 60, RS1 = 20, ASD = 25, see Table 1), taking
advantage of their study design (why/how task: block design, see
Table 5) and sample sizes. We collected a separate replication sample
(RS2, n = 55, see Table 1) of approximately the same size as DS to
replicate the effects found in the DS group. No statistical method was
used to predetermine sample size. Details on data exclusion criteria
are provided in the Participants section. All participant samples com-
pleted a version of the why/how fMRI task and a battery of behavior
measures to characterize social functioning. No randomization was
used. No blinding was applied. The statistical analyses of the data are
described in the context of their respective analysis and research
question in the Methods (see above). All statistical tests are 2-tailed
unless stated otherwise. The study contained multiple replications of
the original findings in the DS, including two neurotypical replication
samples (RS1, RS2) and one autism sample (ASD). For the prediction in
the smaller participant sample of the ASD group, we used a cross-
sample prediction approach: we trained our model on data from all
neurotypical subject samples and tested the model on data from the
ASD group. This approach addresses potential methodological con-
cerns related to the smaller sample size in the ASD group.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The brain data (fMRI) for all neurotypical data generated in this study
are available here: Conte Social Inference and Context collection at
https://nda.nih.gov/edit_collection.html?id=2643; fMRI data for the
autism sample as can be found on the Open Science Framework (OSF,
https://doi.org/10.17605/OSF.IO/RNT8S). Source data are provided in
a de-identified form with this paper and on OSF (https://doi.org/10.
17605/OSF.IO/RNT8S) Source data are provided with this paper.

Code availability
Behavioral and neural datawere analyzedusingMATLABR2021a. FMRI
data were analyzed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/);
see hyperlinks in themanuscript for code regarding preprocessing and
first-level GLMs; code underlying theMVPA analysis is openly available
here103 or upon request.
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