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A Fluid Self-Concept: How the Brain Maintains Coherence
and Positivity across an Interconnected Self-Concept While
Incorporating Social Feedback
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People experience instances of social feedback as interdependent with potential implications for their entire self-concept. How
do people maintain positivity and coherence across the self-concept while updating self-views from feedback? We present a net-
work model describing how the brain represents the semantic dependency relations among traits and uses this information to
avoid an overall loss of positivity and coherence. Both male and female human participants received social feedback during a
self-evaluation task while undergoing functional magnetic resonance imaging. We modeled self-belief updating by incorporating
a reinforcement learning model within the network structure. Participants learned more rapidly from positive than negative
feedback and were less likely to change self-views for traits with more dependencies in the network. Further, participants back
propagated feedback across network relations while retrieving prior feedback on the basis of network similarity to inform
ongoing self-views. Activation in ventromedial prefrontal cortex (vmPFC) reflected the constrained updating process such that
positive feedback led to higher activation and negative feedback to less activation for traits with more dependencies.
Additionally, vmPFC was associated with the novelty of a trait relative to previously self-evaluated traits in the network, and
angular gyrus was associated with greater certainty for self-beliefs given the relevance of prior feedback. We propose that neural
computations that selectively enhance or attenuate social feedback and retrieve past relevant experiences to guide ongoing self-
evaluations may support an overall positive and coherent self-concept.
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Significance Statement

We humans experience social feedback throughout our lives, but we do not dispassionately incorporate feedback into our
self-concept. The implications of feedback for our entire self-concept plays a role in how we either change or retain our prior
self-beliefs. In a neuroimaging study, we find that people are less likely to change their beliefs from feedback when the feed-
back has broader implications for the self-concept. This resistance to change is reflected in processing in the ventromedial pre-
frontal cortex, a region that is central to self-referential and social cognition. These results are broadly applicable given the
role that maintaining a positive and coherent self-concept plays in promoting mental health and development throughout the
lifespan.

Introduction
People maintain complex and multifaceted self-views (Markus
and Wurf, 1987) and dynamically learn about themselves from
feedback they receive through interactions with others and their
environment. However, people experience instances of feedback
as interdependent with potential implications for their entire
self-concept. How do people maintain positivity and coherence

across the self-concept while updating self-views from social
feedback? Past research has examined how the brain engages in
self-referential cognition (Wagner et al., 2012) and processes
self-relevant social feedback (Somerville et al., 2010; Eisenberger
et al., 2011). This work finds that the medial prefrontal (mPFC),
anterior cingulate (ACC), and posterior cingulate (PCC) cortices
process self-relevant feedback (Hughes and Beer, 2013; Yang et
al., 2016; Will et al., 2017) and respond stronger to positive than
negative feedback (Somerville et al., 2010; Korn et al., 2012;
Yoon et al., 2018). However, prior work has neglected how the
interrelationships among self-views shape how people process
feedback and update self-views. Here, we investigate whether the
structural interrelationships between self-views are critical to the
computations the brain makes when modifying self-views from
feedback.
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To preserve self-concept positivity and coher-
ence, the brain may use beliefs about semantic
interdependencies between traits within the self-
concept when processing feedback. We developed a
network model (Fig. 1) that explains how people
use semantic dependencies between traits to main-
tain positivity and coherence in the self-concept
(Elder et al., 2023). These dependency relationships
describe beliefs that people may commit themselves
to when self-evaluating and updating from feed-
back. For example, if people believe that being witty
depends on being outgoing, when a person updates
their beliefs about how witty they are, they may feel
committed to also update their beliefs about how
outgoing they are.

Our network model can be used to generate pre-
dictions for how psychological and neurobiological
processes related to self-updating are affected by the
number of dependencies of a trait. Previously, we
found that people tend to rate traits with a larger
number of dependencies as more self-descriptive
when the traits are positive and less self-descriptive
when they are negative while also rating such traits
more consistently with immediately connected
(i.e., neighboring) traits in the network (Elder et
al., 2023). Further, the ventral mPFC (vmPFC)
tracks trait dependencies during self-evaluation,
suggesting it may have a role in maintaining self-
concept coherence. We later added reinforcement
learning mechanisms to our network model and
found that people tend to update self-views for
traits with higher numbers of dependencies less
when receiving feedback (Elder et al., 2022). These
findings are consistent with the hypothesis that
people maintain self-concept coherence by resist-
ing change to self-beliefs about higher-dependency
traits (Chen et al., 2016).

Here, we test how the brain uses dependency
information when updating self-views from social
feedback. Our primary region of interest is the
vmPFC, given our hypothesis that this region is
involved in maintaining self-concept coherence,
and findings that this region is involved in gen-
eral value-based learning (Bartra et al., 2013).
Specifically, we expect the response of the vmPFC
to feedback will vary based on the dependencies of
a trait, consistent with our past behavioral results
that people update their self-views less for traits
with higher numbers of dependencies. Another
region that may be implicated in processing dependency rela-
tions during feedback is the dorsal mPFC (dmPFC), which
tracks trait dependencies in prior work (Elder et al., 2023) and
is involved in trait inferences during mentalizing and self-
reflection more broadly (Wagner et al., 2012; Lieberman et al.,
2019; Tan et al., 2022).

Our model also allows us to test how the brain guides general-
ization by retrieving relationally similar traits during self-evalua-
tion and manages uncertainty when a trait is semantically similar
to past traits that have received more variable feedback. We find
that vmPFC signals the novelty of traits by tracking our model-
based retrieval measure (Garrido et al., 2015; Cockburn et al.,
2022) and that angular gyrus activity tracks traits with more cer-
tain feedback based on relational structure (Davis and Yee,

2019). Incorporating reinforcement learning (RL) into our
network model allows us to measure these unexplored neu-
ral computations that allow people to dynamically update
self-evaluations based on relational similarity to prior social
experiences.

Materials and Methods
Participants
Forty-six undergraduate students provided informed consent for partici-
pation and received course credit in compliance with approved
University of California, Riverside (UCR) Institutional Review Board
protocols. The sample was 63.0% female, age 18–31 years (MAge =
19.89), 37% Asian, 19.6% Hispanic, 19.6% mixed, 15.2% White, 2.2%
African American, and 3.0% other. Two subjects had incomplete self-
report questionnaires because of protocol administration errors. The

Figure 1. Network visualizations for full network and subset of network. Note: Nodes sized according to out-
degree centrality. Top, Network visualization of 148 traits colored by community. Bottom, Outdegree connec-
tions for a high outdegree centrality trait Friendly.
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target minimum sample size of 30 was determined by an a priori power
analysis conducted using results from a previous behavioral study with
the same design (Elder et al., 2022). We conducted Monte Carlo simula-
tion-based power analyses (Green and MacLeod, 2016) on the mixed
models and identified the minimum sample to achieve the previously
observed main effect during learning (N = 29) and the interaction during
re-evaluations (N = 20). We acquired a larger sample to improve power
for fMRI analyses.

Experimental design
Procedure. When participants first entered the lab, they completed a

consent form and received the cover story for the experiment. They were
informed they would complete an interview that would be recorded and
shared with three to five members of the UCR undergraduate admis-
sions committee. During the interview, participants were asked a range
of questions about their personal characteristics, goals, and interests.
Interviews lasted ;10–20min. Following the interview, participants
completed several questionnaires and were scheduled to return to the
lab for the second appointment to complete the social evaluative task
(;7–10d later).

Participants arrived at the UCR Center for Advanced Neuroimaging
for the second visit to complete the social evaluative task while under-
going an fMRI scan. Participants were led to believe that in the
time between the first and second visit, three to five members of
the UCR admissions committee had reviewed the participant’s
video interview and evaluated the participant on all 148 trait words
based on the interview.

Following the fMRI study, participants underwent a funnel off-
boarding interview and were asked a series of questions assessing the
extent to which they were affected by feedback, were confused about the
task, or how they felt about the experience. We then debriefed them and
informed them the feedback was bogus, deception was involved, and
asked them whether they believed the deception. Although some partici-
pants expressed skepticism after having been debriefed, all participants
indicated having been affected by feedback before debriefing, so we
included all participants in the sample.

Social evaluative feedback task
The experimental task was programmed in MATLAB Psychtoolbox
(Kleiner et al., 2007) and was identical to a previous social evaluative
feedback paradigm (Elder et al., 2022) but extended to fMRI. During the

task, participants evaluated themselves on all 148 positive traits from the
trait network on a 1 (not at all) to 7 (very much) scale in response to the
prompt, “To what extent does the following trait describe you?” The
number that participants selected as self-descriptive was framed in an or-
ange square once the response was made. On each trial, participants
were given 3 s to self-evaluate, after which there was a brief intertrial
interval (ITI) in which the self-evaluation remained on the screen. All
ITIs were drawn as random numbers from a truncated exponential dis-
tribution with a minimum of 2 s and a mean of 3 s. Feedback was then
presented for 2 s with the prompt, “The reviewers see you as . . .” with
the trait at the center of the screen and a red square framed around the
assigned feedback. The orange score denoting the participant self-evalu-
ation remained on the screen for the feedback phase (e.g.,13 if reviewer
feedback was 7, and participant self-evaluation was 4). The task was pre-
sented using MATLAB Psychtoolbox and projected onto a screen that
was viewed via a mirror mounted on the scanner (Fig. 2).

Feedback was administered via a pseudorandom algorithm. Five dif-
ferent probabilities of positive feedback— 90, 70, 50, 30, or 10%— were
randomly assigned to each of the five trait network communities (see
below, Trait network model for details on communities) for each partici-
pant. We used different probabilities of positive feedback as we wanted
the different cues to have different probabilities of reward, akin to arms
in a multiarmed bandit task commonly used in RL. Thus, we wanted to
ensure some network communities, or groups of densely interconnected
traits, had a higher probability of positive feedback (i.e., reward) than
others to examine differences in learning. For instance, a trait belonging
to the 70% community would have a 70% probability of receiving posi-
tive feedback (i.e., on average, feedback is higher than the self-evalua-
tion) and a 30% probability of receiving negative feedback (i.e., on
average, feedback is lower than the self-evaluation). Once feedback was
determined according to the probability of a given community, the feed-
back number from one to seven was assigned according to criteria
related to the participant’s response and the determined feedback va-
lence. We implemented this pseudorandom algorithm, whereby feed-
back was contingently positive or negative to ensure that similar groups
of traits (i.e., communities) received similar feedback. Structuring the
feedback along with communities ensured that participants could learn
expected feedback for semantically related traits in the trait network so
long as they represented the trait relationships described by our network.
If the participant responded below the midpoint, positive feedback was
two or more than participant responses, and negative feedback was

Figure 2. Illustration of the social-evaluative task. During the learning phase, participants evaluated themselves on each of 148 traits (e.g., Outgoing). An orange square appeared around
their selection. After each self-evaluation, they were then shown how an admissions committee ostensibly evaluated them on that same trait. A red square appeared around the selection of
the committee, and the discrepancy between the participant’s self-evaluation and the evaluation of the committee was displayed in white. After completing self-evaluations and receiving feed-
back on all 148 traits, participants proceeded to the re-evaluation phase. They then self-evaluated themselves again on each trait. This figure is adapted from Elder et al. (2022) with
permission.
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equivalent to or less than participant response. If the participant
responded above the midpoint, positive feedback was equivalent to or
more than participant response, and negative feedback was two or less
than participant responses. If the participant’s response was at the mid-
point or the participant provided no response, positive feedback was
above midpoint, and negative feedback was below the midpoint.

The first component of the task included four runs with 37 trials
each of self-evaluations followed by feedback. Following 148 trials of
self-evaluation followed by feedback, participants proceeded to a second
component of the second task where they were asked to self-evaluate
again on all of the traits they previously evaluated on, but they no longer
received feedback. This component of this task included two runs, with
74 trials per run. This allowed us to measure the extent to which self-
evaluations changed after feedback had been received. The scan took;1
h total per participant to complete.

Imaging acquisition
Imaging data were acquired on a 3T MRI scanner (Prisma, Siemens
Healthineers) at the University of Riverside Center for Advanced
Neuroimaging using a 32-channel receive-only coil. Images from a T1-
weighted MP-RAGE sequence [echo time (TE)/repetition time (TR)/
inversion time = 3.02ms/2600ms/800ms, respectively; flip angle (FA) =
8°, voxel size = 0.8 � 0.8 � 0.8 mm3] were used to position imaging vol-
umes in functional scans in addition to use for registration from subject
space to common space.

Functional data were collected with an T2p-weighted gradient echo-
planar imaging (EPI) sequence with the following scan parameters: TE/
TR = 32ms/1700ms; slices = 72; FA = 75°, FOV = 220 mm 190 mm; ma-
trix size =1309112; voxel size = 1.7 p 1.7 p 1.7 mm3; GRAPPA = 2; multi-
band factor = 3; bandwidth =1540Hz/pixel, phase encode = AP. A pair
of spin echo EPI acquisitions with identical spatial parameters and band-
width but opposite phase encoding directions (anterior to posterior (AP)
and posterior to anterior (PA)) were collected to correct for susceptibility-
related distortions.

Computational models
Trait network model. We present a model of self-concept updating

that describes how people track relationships between traits to maintain
positivity and coherence when updating self-beliefs based on social feed-
back (Elder et al., 2022, 2023). At the core of the model is a trait depend-
ency network, constructed from an independent sample of participants.
In applying the trait dependency model to how people maintain coher-
ence and positivity of the self-concept, we assume that people are gener-
ally committed to maintaining coherence between traits that are
generally believed to depend on another. That is, if people believe that
being witty depends on being outgoing, then they will be committed to
not contradicting this belief by claiming they are not outgoing when
they believe they are witty. Explicitly modeling people’s beliefs about
traits separates our model from models of personality (such as the Big
Five model), which are based on statistical associations among traits, in-
dependent of people’s beliefs, and make no assumptions about how peo-
ple maintain coherence among their different trait endorsements. For
example, a personality model may predict that people who are witty are
also more likely to be outgoing, but such models make no assumptions
about whether people believe that these traits are dependent or are at all
committed to maintaining coherence (noncontradiction) between their
ratings of them when self-evaluating. Thus, our trait network is a model
of what trait dependencies people believe exist and may commit them-
selves to, but not necessarily what statistical associations between traits
actually exist (whether being witty and being outgoing are actually statis-
tically associated or whether a person can actually be witty without being
outgoing).

To construct the network, an independent sample of 178 Amazon
Mechanical Turk participants was asked to nominate which of 147 posi-
tive trait words they believed depended on a target trait for semantic
meaning (i.e., What trait does [TARGET TRAIT] depend on?). We
arrived at our final set of 148 traits, by first starting with a list of 292 pos-
itive traits motivating by other literature (Anderson, 1968; Kirby and
Gardner, 1972; Hampson et al., 1987). We had collected normative data

on how interpersonal, desirable, prevalent, broad, and observable each
trait was. We then filtered the traits down by determining which traits
had the most reliable normative ratings across raters. This led us to a list
of 150 traits. We then reduced this list further by removing the two posi-
tive traits in the list of 150 that had normative desirability less than 4.0
(the midpoint).

Each participant made dependency nominations for 10 traits with all
other 147 traits available as dependency options. If more than 25% of
participants agreed on a given dependency relationship, it was thresh-
olded and included as a binary, directed relationship between from trait
i to trait j (i!j). We arrived at the 25% cutoff on the basis of simulations
and reliability tests, whereby we thresholded the network at different
cutoff points and determined the range at which the network metrics
became relatively stable. We further verified the reliability of the network
metrics at this threshold by bootstrapping the network and recomputing
the network metrics (Elder et al., 2023, provides greater detail on net-
work validation). From this procedure, we generated an adjacency ma-
trix of 148 rows by 148 columns for trait words (Table 1 shows all
traits.), computed based on the number of dependency relationships
nominated by participants, such that a one in a cell reflected a trait in
that column depending on the trait in that row (Elder et al., 2022, 2023).

Using this directed graph (Fig. 1), we generated a variety of meas-
ures. Outdegree centrality was defined as the number of traits that
depend on a given trait (sum of the row of a given trait in the adjacency
matrix; how many of columns j depend on row i). Indegree centrality
was defined as the number of traits a given trait depends on (sum of a
column of a given trait in the adjacency matrix; how many of rows i col-
umn j depends on). Pairwise similarity (i.e., dice similarity) between
traits was calculated as two times the number of common neighbors
between a pair of traits (i.e., traits both traits are immediately connected
to), divided by the sum of their degrees (total number of connections),
and ranges from zero to one. Similarity reflects the proportion of overlap
between two traits in terms of shared trait neighbors. We identified
groups of traits with dense interconnections, known as communities, by
using a walktrap community detection algorithm (Pons and Latapy,
2005), and the number of communities extracted is based on the under-
lying structure of the data. The original procedure detected five com-
munities. However, later analyses uncovered a coding error that
excluded one trait word, which when corrected led the same algorithm
to detect four total communities. The revised communities and original
communities shared many overlapping traits and consisted of many
neighboring traits regardless. The revised communities could not be
used for feedback administration as the issue was encountered following
the design of the study and conclusion of data collection. Table 2 con-
tains a glossary of network and computational model terms.

To verify that the directedness of the network was critical for net-
work structure, we calculated reciprocity, a measure of the likelihood
that there is a reciprocal connection in the graph, given a known directed
connection (varies from zero, where all connections in the network are
unidirectional, to one, where all connections in the network are bidirec-
tional). We found a reciprocity of 0.3516, suggesting that connections in
the graph are more likely to be asymmetric than symmetric.

Learning model
Base model. As a basic test that people can learn about themselves

from social feedback based on feedback that they have received, we
implement an RL model (Rescorla and Wagner, 1972), where the model
learns from the five communities (C) of traits based on trial-by-trial
feedback. The model assumes an expectation associated with each of the
five communities in the network, reflecting the learned expected feed-
back for each network community. We initialized the expectations at
4.0, which is consistent with conventions of using the midpoint between
highest (1) and lowest feedback (7) to set initial values (Zhang et al.,
2020). Each trait observed on each trial belongs to a specific community,
which received different probabilities of positive feedback. RLSEc i is the
expected social feedback for community c (that trait t belongs to)
observed on trial i, and is thus the expected feedback for the community
c that trait t on trial i belongs to. The model updates the expected of
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social feedback, the Reinforcement Learning-based Social Expectation
(RLSE), on each trial i based on the following rule:

RLSEc iþ1 ¼ RLSEc i þ a � d i; (1)

where a is a free parameter representing a learning rate, and d i is the
prediction error (PE) on trial i defined as the difference between feed-
back received and feedback expected (RLSE) as follows:

d i ¼ Fi � RLSEc i: (2)

The model predicts that people will self-evaluate in a manner that
minimizes the difference between their self-evaluations and expected
social feedback, RLSE. This model uses one free parameter.

Asymmetrical learning model. As an extension of the base model,
whereby the model learns from communities with a single learning rate,
we incorporate an additional free parameter to allow the model to learn
differently from feedback better than expected (i.e., positive prediction
errors) and feedback worse than expected (i.e., negative prediction
errors). This model operates identically to the base model, except with
different learning rates for different prediction errors. This model has
been validated for the same design and framework in prior work (Elder
et al., 2022). This model uses two free parameters.

Overall propagation model. The base model and asymmetrical learn-
ing model assume learning occurs homogeneously within a community.
All traits in the community are updated the same when a trait in the
community receives feedback, and all traits outside of the community
are not updated at all. To create a more realistic propagation of error
that is based on the full set of relations described by the network, we
implement a model where feedback for a given trait can affect expecta-
tions of feedback for all traits in the network. In the current model,
instead of associated expectations being linked with five communities,
associated expectations are instead linked with all 148 traits.

Therefore, rather than there being five associated expectations
learned by the model, there are 148 associated expectations learned by
the model. Next, to incorporate a more holistic approach to feedback
updating, the model assumes that when social feedback is observed for a
given trait, this feedback causes updates to all traits connected to the
focal trait. Updating of the focal trait t on the current trial, i, is the same
above, but now all traits, j, also update based on their distance from focal
trait t. How updating decays as a function of the distance of a trait from
the focal trait t is given by the following:

RLSEj iþ1 ¼ RLSEj i þ a � d i

1þ dtj
; (3)

where dtj denotes trait j’s distance from the focal trait t receiving feedback
(i.e., length of shortest path from one node to all nodes) and RSLEj i 11

denotes the expectation update for each trait j in the network on trial i.
The impact of the prediction error update is greatest for the trait receiving
feedback itself and equivalent to a standard RL update (dtj = 0), is
next greatest for traits immediately neighboring the trait receiving

Table 2. Glossary of terms

Term Description

Outdegree
centrality

The number of traits that people believe depend on a given trait.

Indegree
centrality

The number of traits that people believe a given trait depends on.

Communities Groups of densely connected traits with many shared neighboring traits.
Distance The length of shortest paths from one trait to another. Reflects how far

a trait is from another.
Similarity The proportion of overlap between two traits, in terms of their shared

number of connections out of total connections.
RLSE The expected feedback based on the accumulation of prior feedback via

error propagation.
SimSE The expected feedback based on the similarity of a trait to feedback of

prior trait.
SE The expected feedback based on the mixture of RLSE and SimSE.
PE The difference between the feedback received and the expectation of

feedback (RLSE).
Familiarity The overall summed similarity of a trait to all prior traits observed.
Uncertainty An information theoretic measure of the variability of prior feedback

received, based on similarity of prior traits to the current trait. It
measures how predictable the feedback is for a trait.

Table 1. Traits contained within each network community

C1 C1 C2 C3 C4 C4 C5

Accurate Practical Well-organized Charming Benevolent Lenient Calm
Capable Precise Well-read Communicative Casual Loyal Clever
Clear-headed Prompt Wise Enthusiastic Charitable Moral Confident
Concise Prudent Clean Extraverted Comfortable Nice Courageous
Constructive Punctual Clean-cut Fun Compassionate Peaceful Fearless
Contemplative Purposeful Composed Funny Considerate Positive Frank
Dedicated Rational Conscientious Good-humored Cooperative Respectful Healthy
Deep Realistic Delicate Humorous Cordial Romantic Lucky
Deliberate Scientific Democratic Lively Ethical Sensitive Natural
Disciplined Self-critical Dependable Outgoing Fair Sentimental Normal
Eager Self-sufficient Dignified Outspoken Faithful Sincere Open-minded
Economical Skillful Elegant Quick-witted Flexible Understanding Optimistic
Experienced Smart Graceful Sociable Friendly Unenvious Original
Foresighted Steady Level-headed Talkative Generous Unselfish Passionate
Industrious Straightforward Mature Verbal Gentle Warm Prideful
Inquisitive Studious Neat Witty Giving Respectable
Inventive Thrifty Polished Glad Thoughtful
Knowledgeable Tough Quiet Good Unafraid
Mathematical Untiring Refined Good-natured Unassuming
Modern Reserved Good-tempered Unprejudiced
Orderly Self-controlled Helpful Unpretentious
Perfectionistic Sophisticated Honest Versatile
Persevering Stable Hospitable Well-spoken
Persistent Subtle Humble
Philosophical Innocent

Feedback was administered according to different probabilities of positive feedback to each community. ‘C’ denotes each of five communities.
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feedback (dtj = 1), and is weakest for traits at the opposite end of the
network (dtj = 3). This equation allows updating of weights based on
feedback to be holistic and not based on the community of a trait. All
traits connected to a given trait in the network are updated on every
trial, with traits that are closer being updated more than traits that are
farther. For example, on a trial in which outgoing is self-evaluated and
receives feedback, outgoing will be updated the most, but traits that are
immediately connected to outgoing, such as sociable, will be updated a
little less, and traits two edges away, such as smart, will be updated still
less, and so on. Therefore, in contrast to typical RL models that might
update a single expectation at each trial, this model updates expecta-
tions of all traits simultaneously as a function of their distance from the
affected trait. This model also incorporates the asymmetrical learning
rates of the prior model and uses two free parameters.

Forward-propagation model. This model is identical to the previous
overall propagation model, except that it restricts propagation to occur
on downstream paths rather than any path (i.e., traits are updated as a
function of depending on the trait receiving feedback, in terms of the
length of shortest path of outdegree edges). The formula is the same,
except that dtj now represents the each downstream distance of each trait
(i.e., outdegree edges) from the trait receiving feedback. This model uses
two free parameters.

Back-propagation model. This model is identical to the previous
overall propagation model, except that it restricts propagation to occur
on upstream paths rather than any path (i.e., traits are updated that
cause the trait receiving feedback, in terms of the length of shortest path
of outdegree edges). The formula is the same, except that dtj now repre-
sents the upstream distance of each trait (i.e., indegree edges) from the
trait receiving feedback. This model uses two free parameters.

Mixture model. To test how people retrieve prior experiences for
their ongoing self-evaluations, we test whether the relational similarity
of a trait to previously evaluated traits will contribute to how people
decide to evaluate.

On a trial-by-trial basis, people may retrieve prior trait feedback
based on its relational similarity, which may influence their current deci-
sion. To reflect this process, we generated similarity-based social expect-
ations (SimSE), which are estimated as the similarity-weighted mean of
prior feedback. Specifically, the influence of prior feedback will be ampli-
fied or diminished in expectations based on the relational similarity of
the current trait to prior traits as follows:

SimSEt i ¼

X
j2J
Stj � FjX
j2J
Stj

; (4)

where Stj is the similarity of focal trait t to the previously presented
trait j, and Fj is the feedback received for previous trait j of all prior
traits J (j [ J).

The model assumed overall SE is a mixture of the two different types
of expectation—expected social feedback based on accumulated social
feedback via trial-and-error learning (RLSE) and expected social feed-
back based on the similarity to prior traits (SimSE). The mixture of these
two forms of expectation is described by the following:

SEt i ¼ RLSEt i � w þ SimSEt i � ð1� wÞ; (5)

where f is a mixture parameter reflecting how much participants rely
on trial-and-error feedback (closer to one means more reliance) or simi-
larity-based retrieval (closer to zero means more reliance) to shape cur-
rent expectations of social feedback. Therefore, expectations during
learning from self-relevant social feedback consist of updates from error
propagation (i.e., RLSE) as well as the retrieval of prior traits and rele-
vant feedback (i.e., SimSE). This model has three free parameters.

Familiarity.Additional measures can be extracted from the similarity
model to predict brain activation during the task. The overall amount of
relational similarity (i.e., retrieval) on a given trial i reflects the familiar-
ity of a trait (Gillund and Shiffrin, 1984; Nosofsky, 1988).

Familiarity is calculated during self-evaluation as the denominator of
Equation 4, the summed similarity of the trait t in trial i to all prior traits
j through J. Past neuroimaging studies have used this measure for per-
ceptual categories (Davis et al., 2012b, 2014; Zeithamova et al., 2019),
whereas we apply this measure to the self-concept in a relational cate-
gory model. Some research has found that familiarity is inversely related
to vmPFC activation (Garrido et al., 2015).

Uncertainty. Given a set of probabilities reflecting the likelihood of
different feedback responses, we can estimate a measure of overall
uncertainty using a standard entropy formulation (Shannon, 1948;
Davis et al., 2012a, b). Uncertainty represents the likelihood of all
feedback given prior traits observed, such that more uncertainty may
be represented by equivalent likelihoods across all feedback catego-
ries as follows:

Entropyt i ¼ �
XK

F

PF t � log2PF t; (6)

where PF t denotes the probability of receiving feedback rating F for trait
t, F is one of K feedback categories possible. Here, the probability of
receiving a particular feedback rating is computed as the summed simi-
larity of the current trait to all prior traits that received that feedback
over the summed similarity of all prior traits regardless of feedback.
Thus, the probability that trait t receives feedback F, PF t, is defined as
follows:

PF t ¼

X
f2F

StfX
K

X
k2K

Stk
; (7)

where Stf represents the similarity of the trait t (on trial i) to trait f that
received feedback rating F, and the index f [ F indicates that the sum is
over all traits f that received feedback rating F.

In this uncertainty formula (Hirsh et al., 2012; FeldmanHall and
Shenhav, 2019), if all feedback was equally likely because of all prior
feedback being for traits of equivalent similarity to the current trait, the
current trait self-evaluation would have higher uncertainty. Conversely,
if the current trait is most similar to traits that received feedback six and
seven, but not similar to traits that received other types of feedback, the
current trait would have lower uncertainty.

Model fitting. Parameters were fit to each subject’s self-evaluations
using the L-BFGS-B optimization algorithm from the optimx package,
available in R software (Nash and Varadhan, 2011). Model free parame-
ters were fit using a least-squares approach by squaring the difference
between the SE of a trial and the self-evaluation of a trial and minimizing
the sum of squared differences across trials as follows:

RSS ¼
XI

i¼1

ðEvaluationi � SEiÞ2: (8)

Model comparison. To compare models, we used a formulation of
Akaike information criterion (AIC) for residual sums of squares as
follows:

AIC ¼ 2p þ n � ln RSS
n

� �
; (9)

The above formula describes n as the number of trials for a given
participant and RSS as the residual sums of squares for the participant
while penalizing p for the number of free parameters estimated in the
model. We attempted Ridge regularized ordinary least squares (OLS) as
in a prior work (Elder et al., 2022), but it did not contribute to improve-
ments in model performance or recovery, so we retained the traditional
OLS procedure. AIC values were summed across subjects to estimate
model performance.
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We use AIC as the information criterion for model comparison deci-
sions because Bayesian Information Criterion (BIC) imposes a largely
penalty for additional parameters than AIC. Although we believe BIC
risks underfitting and penalizing too strictly, we report BIC as well in
model (Table 3).

Parameter recovery method. To determine whether the model pa-
rameters were identifiable at the individual participant level (Wilson and
Collins, 2019; Lockwood and Klein-Flügge, 2020; Zhang et al., 2020), we
tested whether they could be recovered from simulated data. We per-
formed two different tests of parameter recovery, (1) randomly simulat-
ing parameters, generating behavior from these parameters and testing
whether the parameters could be recovered during fitting to generated
behavioral data, and (2) generating behavioral data using the original fit-
ted parameters from the 46 participants and testing whether the original
participants’ parameters could be recovered during fitting to generated
behavioral data.

For each parameter from the best fitting model, we identified five
equally spaced intervals between the 25th percentile and 75th of the dis-
tributions of the parameters. At each interval, we drew 100 values for a
given parameter and added Gaussian noise equivalent to one-fourth SD
of the original parameter distribution to increase the range of possible
parameters simulated for positive learning rate, negative learning rate,
and mixture. To simulate 500 participants (Palminteri et al., 2017), we
randomly sampled without replacement from each of the newly gener-
ated parameters to determine a parameter set for a given participant.
Using these simulated parameter sets, we generated participant behavior
and rounded trial-by-trial simulated estimates to the nearest whole num-
ber to emulate the Likert behavioral responses of the participants. Then,
as with the original behavioral data, we fit parameters to the simulated
behavioral data. We then correlated the fitted parameters with the true
parameters generated from the simulations to estimate whether parame-
ters were recoverable.

The second parameter recovery simulation was aimed at identifying
how recoverable parameters were while maintaining the observed covar-
iance structure of the original fitted subject parameters (Vaidya and
Badre, 2020). Participant fitted parameters were used to generate new
behavioral data, and parameters were then fit to behavioral data gener-
ated by the original participant parameters. Correlations were estimated
between the fitted parameters and the original participant parameters to
estimate how recoverable the originally estimated parameters are.

Statistical analyses
Behavioral analysis.Multilevel models were implemented in R using

lme4 (Bates et al., 2015), and Satterwaithe’s approximation was used for
determining p values in lmerTest (Kuznetsova et al., 2017). Semipartial
R2 (sr2) estimates were computed for each fixed effects predictor using
the standardized generalized variance approach using r2glmm (Edwards
et al., 2008; Jaeger et al., 2017). Likelihood ratio tests were performed to

determine models best supported by the data. Maximal random inter-
cepts and slopes were tested and were removed as needed if unsupported
by the data (i.e., low variance estimates) or if the model failed to con-
verge (Barr et al., 2013). Moreover, models included crossed random fac-
tors (Baayen et al., 2008) with both traits and subjects modeled as
random factors.

Trial-by-trial learning. We tested whether learned expectations gen-
erated from prior feedback could predict participants’ trial-by-trial self-
evaluations. To avoid overfitting, leave-one-participant-out cross-valida-
tion was used; for subject n from sample N, subject n’s free parameters
were omitted, and the summary statistics (mean for learning rates, me-
dian for mixture) of free parameters, from one to N – n, was determined.
Parameters determined by the leave-one-out procedure were included in
the computational model for subject n, such that any predictability pro-
duced from the computational model would not be a result of partici-
pant n’s data and overfitting but rather from robustness of the model
itself. The model contained trials nested within subjects, with subjects
and traits set as random factors, initial self-evaluation as the response
variable, and random slopes for SE for subjects and fixed slopes for
traits.

Analysis of self-evaluation change
A residualized change approach (predicting re-evaluations while con-
trolling for initial self-evaluations) was used to test for changes in self-
views from initial self-evaluations to re-evaluations. To test whether the
computational model can predict changes in self-evaluations, the last SE
for the model during trial-by-trial learning was extracted for each trait
within each participant. Then, for each participant and the 148 traits
they observed and re-evaluated after learning, the final model SEs were
used to reflect participants’ social expectations for traits after learning
had concluded. We tested a crossed random effects mixed model that
included both subjects and traits set as random factors. Initial self-evalu-
ations, outdegree centrality, and indegree centrality were entered as fixed
slopes. PEs and SEs were entered as random slopes for both subjects and
traits. Outdegree centrality was tested as an interaction with both PEs
and SEs. The extent to which PE and SE predict re-evaluations while
controlling for initial self-evaluations reflects change from initial evalua-
tion (self-evaluation before receiving feedback), whereas the interaction
terms with outdegree reflect the extent to which change from model PEs
and SEs is conditional on outdegree centrality.

Neuroimaging preprocessing. Results included in this article come
from preprocessing performed using fMRIPrep 1.4.0 (Esteban et al.,
2019), which is based on Nipype 1.2.0 (Gorgolewski et al., 2011).

Anatomical data preprocessing. The T1-weighted (T1w) image was
corrected for intensity nonuniformity with N4BiasFieldCorrection
(Tustison et al., 2010), distributed with Advanced Normalization
Tools (ANTs 2.2.0; Avants et al., 2008), and used as T1w-reference
throughout the workflow. The T1w-reference was then skull-stripped with
a Nipype implementation of the antsBrainExtraction.sh workflow (from
ANTs), using OASIS30ANTs as target template. Brain tissue segmentation
of CSF, white-matter, and gray-matter was performed on the brain-
extracted T1w using fast (Zhang et al., 2001). Volume-based spatial normal-
ization to one standard space (MNI152Nlin6Asym) was performed through
nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-
extracted versions of both T1w reference and the T1w template. The follow-
ing template was selected for spatial normalization: Functional MRI of the
Brain (FMRIB) Software Library (FSL) MNI International Consortium for
Brain Mapping 152 nonlinear sixth-generation Asymmetric Average Brain
Stereotaxic RegistrationModel (Evans et al., 2012).

Functional data preprocessing. For each of the six BOLD runs found
per subject (across all tasks and sessions), the following preprocessing
was performed. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. A deforma-
tion field to correct for susceptibility distortions was estimated based on
two EPI references with opposing phase-encoding directions, using
3dQwarp (Cox and Hyde, 1997). Based on the estimated susceptibility
distortion, an unwarped BOLD reference was calculated for a more
accurate coregistration with the anatomic reference. The BOLD ref-
erence was then coregistered to the T1w reference using FLIRT

Table 3. Comparisons of each model depicting number of parameters, AIC, AIC
difference, BIC, BIC difference, and the relative comparisons

No. Model name Param Compare AIC DAIC BIC DBIC

1 Base 1 5711.318 5846.595
2 Asymmetrical learning 2 2 vs 1 4938.931 �772.388 5209.485 �637.111
3 Overall propagation 2 3 vs 2 4389.841 �549.09 4660.396 �549.09

3 vs 4 �19.466 �19.466
3 vs 5 3.470 3.470

4 Forward propagation 2 4 vs 2 4409.306 �529.625 4679.860 �529.625
4 vs 3 19.466 19.466
4 vs 5 22.935 22.935

5 Backward propagation 2 5 vs. 2 4386.841 �552.560 4656.925 �552.560
5 vs 3 �22.935 �22.935
5 vs 4 �3.470 �3.470

6 Mixture with similarity 3 6 vs 5 4355.706 �30.665 4761.537 104.612

Param refers to number of free parameters. Compare refers to which model number is compared to which
other model number. AIC refers to the Akaike information criteria for each model. BIC refers to the Bayesian
information criteria for each model. Delta AIC refers to the difference in model AICs at each comparison,
while Delta BIC refers to the difference in model BIC at each comparison.
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(FMRIB Linear Image Registration Tool; Jenkinson and Smith, 2001)
with the boundary-based registration (Greve and Fischl, 2009) cost func-
tion. Coregistration was configured with nine degrees of freedom to
account for distortions remaining in the BOLD reference. Head-motion
parameters with respect to the BOLD reference (transformation matri-
ces, and six corresponding rotation and translation parameters) are
estimated before any spatiotemporal filtering using MCFLIRT (FMRIB
Linear Image Registration Tool with motion correction; Jenkinson et
al., 2002). BOLD runs were slice-time corrected using 3dTshift from
AFNI (Analysis of Functional Neuro Images) 20160207 (Cox and
Hyde, 1997). The BOLD time series were resampled onto their origi-
nal native space by applying a single composite transform to correct
for head motion and susceptibility distortions. These resampled
BOLD time series are referred to as preprocessed BOLD in original
space, or just preprocessed BOLD. The BOLD time series were
resampled into standard space, generating a preprocessed BOLD
run in MNI152Nlin6Asym space. First, a reference volume and its
skull-stripped version were generated using a custom methodology
of fMRIPrep. All resamplings can be performed with a single inter-
polation step by composing all the pertinent transformations (i.e.,
head-motion transform matrices, susceptibility distortion correc-
tion when available, and coregistrations to anatomic and output
spaces). Gridded (volumetric) resamplings were performed using
antsApplyTransforms (ANTs), configured with Lanczos interpola-
tion to minimize the smoothing effects of other kernels (Lanczos,
1964). Nongridded (surface) resamplings were performed using
mri_vol2surf (FreeSurfer).

Neuroimaging data analysis
fMRI statistical analyses were conducted using FEAT (FMRI Expert
Analysis Tool) version 6.00 in FSL. Regressors and parameters were set
at first-level model regressing voxelwise activity onto explanatory varia-
bles (EVs). Partial smoothing was applied using a three-dimensional
6 mm Filtered White Gaussian Noise kernel. The entire 4D dataset was
grand-mean intensity normalized by a single multiplicative factor. High-
pass temporal filtering was applied to remove low frequencies (128 s cut-
off). For all models, nuisance regressors were included for motion (six
head-motion parameters, three translation and three rotation, and their
temporal derivatives), and volumes exceeding head motion of 0.9 mm
framewise displacement were scrubbed (Siegel et al., 2014). Models
included temporal filtering and temporal derivatives for each task vari-
able. EVs were convolved with a double-gamma HRF. Continuous varia-
bles were scaled within subjects and centered within runs. Time series
statistical analysis was conducted using FILM (FMRIB Improved Linear
Model) with local autocorrelation correction (Woolrich et al., 2001).
Statistical analyses were conducted using a standard level-level analysis
in FEAT.

The second-level models, averaging contrast estimates within sub-
jects, were tested using a fixed effects analysis. A third-level model, aver-
aging contrast estimates between subjects, was tested using FLAME
(FMRIB Local Analysis of Mixed Effects) stage 1, a mixed effects anal-
ysis that accounts for both within- and between-subject variances
(Beckmann et al., 2003; Woolrich et al., 2004; Woolrich, 2008). Final
statistical maps were corrected for multiple comparisons at p , 0.05
using permutation-based cluster mass thresholding, implemented in
FSL Randomize. Whole-brain analyses used a primary cluster-form-
ing threshold of t = 3.28 (critical value of t for df = 45 and a = 0.001)
and 6 mm variance smoothing. To generate EVs for fMRI analyses
that involve RL parameters, the RL model was applied across all par-
ticipants using the mean parameters for learning rates and median
parameter for mixture (because of its skewness). It is conventional in
RL applications in fMRI research to generate group-level parameters
to stabilize noisy parameter estimates (Daw, 2011) and to provide an
estimate of population parameters (Holmes and Friston, 1998).

Feedback models. Feedback models included a constant of stimulus
presentation at self-evaluation onset (3 s), a constant of stimulus presen-
tation at feedback onset (2 s), a parametric regressor of PE at feedback
onset (2 s), and a dummy indicator regressor indicating any missing
responses at feedback onset (2 s), for a total of four EVs. We focused

only on the contrast examining voxels where the average effect of PE is
significantly different from zero.

However, given that feedback outcome and PE are highly correlated,
they will often exhibit similar associations with neural response. We
therefore employ an identify-and-justify approach (Zhang et al., 2020),
first identifying regions associated with PE and justifying that these
regions are indeed uniquely associated with PE, and not merely observed
feedback. To implement this, we conducted an additional GLM consist-
ing of PE components rather than PE. Specifically, we modeled a con-
stant of stimulus presentation at self-evaluation onset (3 s), a constant of
stimulus presentation at feedback onset (2 s), a parametric regressor of
observed feedback at feedback onset (2 s), a parametric regressor of
RLSE at self-evaluation onset (3 s), a dummy indicator regressor indicat-
ing any missing responses at self-evaluation onset (3 s), and a dummy
indicator regressor indicating any missing responses at feedback onset
(2 s) for a total of six EVs. We focused only on the contrast examining
the voxels where the average effect of feedback is greater than the average
effect of expected feedback (i.e., Feedback. RLSE).

To justify the distinct contributions of PE and break up the cluster
into smaller, more interpretable clusters, we perform a conjunction anal-
ysis by comparing the overlap in clusters between contrasts testing the
effect of PE and PE components (i.e., PE \ Feedback. RLSE). To do so,
we tested using a conjunction analysis, with the minimum statistic
approach (Nichols et al., 2005), which identified voxels that were statisti-
cally significant in both the PE and Feedback . RLSE contrasts. We
removed any clusters smaller than 50 voxels. This conjunction analysis
aids in the interpretation of PE by justifying that activation is associated
with PE and not only merely feedback.

As an additional analysis of PE, and to build on prior research on
positively biased responses to self-relevant feedback (Korn et al., 2012;
Hughes and Beer, 2013), we implemented a GLM with regressors for
positive and negative PEs, along with the previously described con-
stants and covariates. Specifically, this consisted of a constant of stimu-
lus presentation at self-evaluation onset (3 s), a constant of stimulus
presentation at feedback onset (2 s), a parametric regressor of positive
PE (feedback better than expected) at feedback onset (2 s), a parametric
regressor of negative PE (feedback worse than expected) at feedback
onset (2 s), and a dummy indicator regressor indicating any missing
responses at feedback onset (2 s) for a total of five EVs. We focused on
contrasts examining voxels where the average effect of positive PE is
greater than the average effect of negative PE (positive PE . negative
PE), and where the average effect of negative PE is greater than the av-
erage effect of positive PE (negative PE. positive PE).

Finally, we investigated whether neural processing of PEs depends
on people’s perceptions of trait dependencies (i.e., outdegree). Specifically,
we modeled a constant of stimulus presentation at self-evaluation onset
(3 s), a constant of stimulus presentation at feedback onset (2 s), a para-
metric regressor of observed feedback onset (2 s), a parametric regressor
of outdegree centrality at feedback onset (2 s), the interaction between
feedback and outdegree centrality, and a dummy indicator regressor indi-
cating any missing responses at feedback onset (2 s) for a total of six EVs.
This interaction should provide insight into how the brain processes feed-
back and how initial processing of observed feedback manifests in differ-
ences in the computation of PEs. We conducted a whole-brain analysis
but were primarily interested in the vmPFC. When precise localization for
a small brain region is not the priority, concerns about false negatives can
justify further data reduction techniques (e.g., ROI analysis) and more lib-
eral thresholding (Carter et al., 2016). As such, to promote sensitivity for a
potential vmPFC interaction effect, we constrained the thresholding space
to an a priori vmPFC region identified as negatively associated with outde-
gree centrality in previous work (Elder et al., 2023), using a more liberal
primary cluster-forming threshold of t = 2.41 (critical value of t for df =
45 and a = 0.01).

Updating during learning. How the brain is involved during feedback
processing may also reflect how people update and change their self-
views. To test this, we compute a self-evaluation change score, that is, the
difference between re-evaluation and initial self-evaluations. To explore
asymmetries in processing positive change, negative change, and resist-
ance to change, we split the change score into three components, positive
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change (a continuous regressor depicting the amount the participant will
change positively on the trait), negative change (a continuous regressor
depicting the amount the participant will change negatively on the trait),
and no change (a dummy indicator variable for traits the participant did
not change self-evaluations on). The final model included a constant of
stimulus presentation at self-evaluation onset (3 s), a constant of stimulus
presentation at feedback onset (2 s), a parametric regressor of positive
change at feedback onset (2 s), a parametric regressor of negative change
at feedback onset (2 s), a dummy indicator of no change at feedback onset
(2 s), a parametric regressor of outdegree centrality at feedback onset
(2 s), the interaction between no change and outdegree centrality, and a
dummy indicator regressor indicating any missing responses at feedback
onset (2 s) for a total of seven EVs. We were primarily interested in the
voxels where the average effect was greater for positive change than
negative change (Positive Change . Negative Change), where the
average effect was greater for negative change than positive change
(Negative Change . Positive Change), and where the effect for No
Change trials depended on outdegree centrality (No Change p

Outdegree). We conducted both a whole-brain analysis for the
interaction, as well as constrained the analysis to the vmPFC mask
previously described. This model provides insight into the regions
that activate for positive relative to negative change, as well as well
as the regions that associated with outdegree centrality when people
do not change self-views.

Retrieval models.During self-evaluations, people retrieve past experi-
ences and related feedback to determine how they see themselves. The
familiarity of a trait given structural relatedness to prior self-evaluations
informs one’s current self-evaluations. Moreover, the feedback received
for prior traits and how likely different types of feedback are given their
structural relationships informs how certain or uncertain people are
about their decisions. The following are modeled at self-evaluation
onset.

Familiarity.We next examined the regions associated with the famil-
iarity of a trait given the aggregate similarity to previous traits observed.
Thus, we modeled a constant of stimulus presentation at self-evaluation
onset (3 s), a constant of stimulus presentation at feedback onset (2 s), a
parametric regressor familiarity (i.e., summed similarity of current trait
to prior observed traits) at self-evaluation onset (3 s), and a dummy indi-
cator regressor indicating any missing responses at self-evaluation onset
(3 s) for a total of four EVs. We specifically tested voxels where the aver-
age effect of familiarity was significantly different from zero.

Uncertainty. The likelihood of different types of feedback contributes
to self-evaluative processes, as represented by uncertainty. Self-evalua-
tions may be facilitated by greater certainty or stymied by greater uncer-
tainty. To examine the decision processes underlying self-evaluations
after having experienced feedback and retrieved prior experiences, we
modeled a constant of stimulus presentation at self-evaluation onset
(3 s), a constant of stimulus presentation at feedback onset (2 s), a para-
metric regressor decisional uncertainty (i.e., entropy as defined by the
similarity of the current trait to traits that received different feedback) at
self-evaluation onset (3 s), and a dummy indicator regressor indicating
any missing responses at self-evaluation onset (3 s) for a total of four
EVs. We specifically tested voxels where the average effect of uncertainty
was significantly different from zero.

Data availability
Code and materials are openly available at GitHub via our Open Science
Framework page at https://osf.io/2v7jc/?view_only=1ce6398515784671b2
be7e25d39fc683. We generated a preregistration that can be found at https://
aspredicted.org/rz5fb.pdf. Some of our fundamental RL-based predictions
remain the same, but many of our predictions and analyses shifted from
what was initially preregistered. We preregistered this project while still ana-
lyzing and writing our previous related projects applying network and RL
techniques (Elder et al., 2022, 2023), and our thinking and expertise have
evolved over the course of working with related data. We decided to further
advance the computational modeling by incorporating the network structure
into the RL model, which then allowed us to test additional behavioral and
neural questions.

Results
Behavioral results
Computational model performance
We compared several models to identify a winning model. Our
simple base model with a single learning rate (one free parameter;
AIC = 5711.318) was outperformed by an asymmetrical learning
model with two separate learning rates for positive and negative
PEs (two free parameters; AIC = 4938.931), which both learned
from broad network communities.

Next, we tested whether feedback only affects the local com-
munity of traits or spreads more holistically to other traits via
interconnections described by the network (e.g., forward to chil-
dren nodes or backward to parent nodes). To test this question,
we compared the asymmetrical learning model (which learned
only locally from communities) against models that propagated
error based on the distance between traits (i.e., larger error-based
updates for immediately connected nodes, less for more distant
nodes). The propagation models incorporated the two learning
rates for positive and negative prediction errors, such that the
primary difference in the comparison was whether the model
learned values for five communities or 148 traits simultaneously.
The models that learn holistically and update all traits simultane-
ously vastly outperformed a model that learns only from com-
munities. We further interrogated whether there are constraints
to how prediction errors propagate. Indeed, the back-propa-
gation model (two free parameters; AIC = 4386.371) that
propagates prediction errors to the rest of the network based
on neighbors that it depends on (indegree edges), outper-
formed a forward-propagation model (two free parameters;
AIC = 4409.306) that propagates prediction errors to the rest
of the network based on neighbors that depend on it (outdegree
edges), and the propagation model that ignores directionality
(two free parameters; AIC = 4389.841). The difference between
the back-propagation and overall propagation AICs was small,
so we interrogated individual AICs and found that 56.52% of
participants had information criteria that were smaller for
back-propagation than overall propagation. Furthermore, we
applied the same modeling procedure to our previous dataset
with an identical design (Elder et al., 2022) and found that the
better fit for the back-propagation model replicated there.

Finally, we tested whether the back-propagation model could
be further improved by incorporating similarity-based retrieval
mechanisms at the cost of an additional free parameter for mix-
ing trial-and-error-based expectations of social feedback and
similarity-based expectations of social feedback. Indeed, the mix-
ture back-propagation model was the best performing model
(three free parameters; AIC = 4355.706). Table 3 shows model
comparison statistics.

The propagation findings suggest that people do not
receive feedback in isolation but rather use the feedback they
experienced for a particular trait to inform their expectations
for semantically related traits. Indeed, past work shows that
people generalize errors during learning (Gershman and Niv,
2015; Jocham et al., 2016; Rudebeck et al., 2017; Baram et al.,
2021). We extend this work by showing that people back-
propagate errors to the parents of a trait (the traits it depends
on) to resolve differences between feedback and expectations
rather than propagating that error forward to the children of
the trait. This is consistent with our overall theory that it is
critical to maintain consistency in self-views between traits
and those they depend on (Elder et al., 2023), as well as prior
work on how people maintain coherence in beliefs more
broadly (Thagard, 1989; Read and Marcus-Newhall, 1993;
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Gershman, 2019). To be coherent and
consistent, when one receives feedback
about a proposition that differs from ex-
pectation, one ought to infer backward
to correct the beliefs that led them to
this error.

Computational model parameters and
recovery
Consistent with our hypothesis that partic-
ipants would learn more rapidly from
feedback that was more positive than
expected (positive PEs) than from feed-
back that was more negative than expected
(negative PEs), a paired-samples permuta-
tion t test revealed that the learning rate
for positive PEs is greater than negative
PEs [positive learning rates, mean = 0.354,
median = 0.136, SD = 0.403; negative
learning rates, mean = 0.080 median =
0.039, SD = 0.102; observed difference =
0.274, p , 0.001). To further test whether
learning is supported by the current
model, we computed the absolute value for
each PE, averaged all absolute PEs across
all participants’ trials, and estimated the
Spearman’s Rho correlation between trial
number and average absolute PE. We used
Spearman’s Rho to estimate the correla-
tion between trial number and absolute
PE, as absolute PE averaged across subjects
may decrease at a monotonic, but not nec-
essarily linear, rate. There is a negative
association between trial and average abso-
lute PEs (Fig. 3), such that absolute PEs
become smaller across time [r(146) =
�0.168, p = 0.042].

As a test of the reliability of our model
fits, we performed parameter recovery for
our models by fitting the models to data
generated with random parameter values
and testing the associations between simu-
lated and fitted parameter values. Our
model parameters were recoverable both
using randomly simulated parameters [r
(ap) = 0.81; r(f ) = 0.72; r(an) = 0.57], and
using the nonindependent and correlated parameters observed
in our own participants’ parameter fits [r(ap) = 0.82; r(an) =
0.76; r(f ) = 0.74]. Figure 3 for confusion matrices of correla-
tions among observed and simulated parameters.

Self-concept learning and change
The above analysis revealed that our final learning model was
able to fit participants’ behavior and support inferences about
how their self-evaluations change from trial-by-trial feedback. As
a test of the overall explanatory value and generalizability of our
final model, we tested whether we could predict individual trial-
by-trial responses using a leave-one-participant-out procedure,
whereby each participant’s computational model regressors were
generated using the free parameter summary statistics (mean for
learning rates, median for mixture) of all other participants. The
model significantly predicted left-out participants’ trial-by-trial
self-evaluations (b = 0.104, SE = 0.021, t(50) = 5.015, p , 0.001,

sr2 = 0.013), reflecting that the model effectively characterizes
how people learn and self-evaluate in the present task.

Our next goal was to test whether the model predicts changes in
self-evaluations between learning and re-evaluation and how outde-
gree centrality constrains participants’ self-evaluation updates in
response to feedback. To this end, we tested a residualized change
model in which both expectations (b = 0.227, SE = 0.017, t(51) =
13.044, p , 0.001, sr2 = 0.081) and PE (b = 0.108, SE = 0.020,
t(45) = 5.450, p, 0.001, sr2 = 0.024) predicted self-evaluations in the
re-evaluation phase after all feedback had been received (controlling
for initial self-evaluations during learning). Importantly, there was
an interaction of PE with outdegree centrality (b = �0.035, SE =
0.009, t(149) = �3.830, p , 0.001, sr2 = 0.003), reflecting smaller
changes in self-evaluations at higher levels of outdegree centrality.
Consistent with our hypothesis and previous results (Elder et al.,
2022) as well as related work (Chen et al., 2016), this suggests that
outdegree centrality constrains the extent to which people update
self-evaluations as a function of feedback (Fig. 4).

Figure 3. Top, Time series plot depicting the average absolute PE across trials. There is a negative Spearman’s correlation
between time and average absolute PEs such that absolute PEs become smaller across time [r(146) = �0.168, p = 0.042].
A–C, Bottom, Confusion matrices depicting (A) the correlation among true parameters, (B) the correlation among Simulated
and recovered (i.e., Fitted) parameters, and (C) the correlations among true and recovered (i.e., Fitted) parameters.
Parameters appear generally recoverable.
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Neuroimaging results
Feedback processes
Our primary neuroimaging questions surround how positivity
and beliefs about dependency relations among traits constrain
feedback processing in the brain. However, before testing our
primary hypotheses, we first tested whether the vmPFC processes
feedback and PEs in the present task, consistent with its role in
more basic RL tasks.

Overall PE test and conjunction
We first estimated the effect of overall PE on brain activity.
However, given that feedback outcome and PE are highly corre-
lated, they will often exhibit similar associations with neural
response. Therefore, we then employ an identify-and-justify
approach (Zhang et al., 2020) by identifying regions associated
with PE and justifying that these regions are indeed uniquely
associated with PE and not merely with observed feedback.

First, we found that overall PE was associated with a large,
undifferentiated, contiguous cluster centered in the occipital cor-
tex (14, �78, 8; k = 33203, t = 17.9; p , 0.001) that stretched
across cortical midline structures to vmpFC, as well as other clus-
ters located in ventral striatum and extending to other subcorti-
cal regions (�14, 0, �14; k = 1157, t = 7.32, p = 0.006; Table 1).
However, inferences about specific regions should not be made
for contiguous, undifferentiated clusters (Woo et al., 2014a).
Additionally, given that vmPFC responds to feedback more gen-
erally (Korn et al., 2012) and that the effect of PE can be difficult
to disentangle from the effect of overall feedback (Zhang et al.,
2020), we tested the extent to which the PE effect overlapped
with the effect of the constituent parts of PE (Feedback –
Expectation, represented in a contrast as Feedback . RLSE)
using a conjunction analysis. This approach justifies the interpre-
tation of activation as reflecting PE, rather than just feedback.
Specifically, we first computed the contrast of Feedback. RLSE,
and then examined the conjunction between the two contrasts
(1) PE and (2) constituent components of PE (Feedback .
RLSE) to test the regions of PE that are uniquely associated with
the components of PE, and not merely overall feedback. This
also served the purpose of breaking up the large undifferentiated
cluster. This analysis revealed overlapping activation in regions
such as vmPFC and posterior cingulate cortex (Table 4; Fig. 5).
Consistent with prior work (Corlett et al., 2022), these results
suggest that the vmPFC and other regions are involved in

processing social feedback and further that it is sensitive to the
amount that feedback deviates from expectations (i.e., prediction
error).

Asymmetric processing of prediction errors
Behaviorally, participants updated their self-beliefs more from
positive than negative PEs. To test whether this behavioral asym-
metry is reflected in vmPFC (and other regions), we compared
activation for positive PEs to negative PEs (i.e., positive PEs .
negative PEs). Results revealed significant clusters of activation
in vmPFC, bilateral superior temporal sulcus, precuneus, poste-
rior cingulate, bilateral orbitofrontal cortex, and dorsal medial
prefrontal cortex (Fig. 6, top; Table 5). The vmPFC activation is
consistent with our hypothesis that the vmPFCmay facilitate posi-
tively biased self-concept updating and is broadly consistent with
other research on self and social feedback processing (Sharot et al.,
2007; Somerville et al., 2010; Korn et al., 2012; Hughes and Beer,
2013; Hughes and Zaki, 2015). In particular, one candidate mech-
anism for involvement of vmPFC in processing positive self-rele-
vant feedback may be because of its role in reward processing
more generally (Rangel and Hare, 2010; Levy and Glimcher, 2012;
Roy et al., 2012; Bartra et al., 2013; Tamir and Hughes, 2018). The
involvement of temporoparietal and dorsal medial frontal regions
in processing positive over negative PEs is consistent with regions
found in mentalizing (Mitchell, 2009; Koster-Hale and Saxe, 2013;
Kliemann and Adolphs, 2018) and in processing inconsistent in-
formation and updating impressions (Ma et al., 2012; Mende-
Siedlecki and Todorov, 2016; Hughes et al., 2017; Charpentier and
O’Doherty, 2018; Park et al., 2020a).

We also tested for regions that activated more for less-favor-
able PEs (i.e., negative PEs. positive PEs). We observed clusters
in primary and secondary somatosensory cortex, postcentral
gyrus, opercular cortex, and bilateral insular cortex (Fig. 6, bot-
tom; Table 5). The regions that track less-favorable PEs are con-
sistent with regions identified in social rejection and social pain-
related response (Kross et al., 2011; Eisenberger, 2012; Woo et
al., 2014b). In tandem, the asymmetries in brain processing of
PEs observed here may support asymmetrical learning and an
overall positive self-concept.

vmPFC response to feedback depends on outdegree centrality
Both our previous work (Elder et al., 2022) and behavior in the
current task demonstrate that people tend to update higher

Figure 4. Predicted effects for outdegree-constrained effects of PE on changes in self-evaluations (left) and vmPFC subcluster activation (right). Note: Holding covariates constant, with 95%
confidence intervals. Continuous variable of prediction error/feedback split into three levels for visualization. On the x-axis is outdegree centrality of trait. Left, Residualized change on y-axis is
residuals from mixed model of re-evaluations predicted by initial self-evaluations, such that positive values are self-evaluations that increased relative to initial self-evaluations, and negative
values are self-evaluations that decreased. Plots generated using ggeffects package in R (Lüdecke, 2018). Interaction illustrating that prediction errors contribute less to self-evaluations for traits
higher in outdegree centrality. Right, Interaction illustrating feedback contributes to asymmetries in vmPFC response at higher outdegree. Predictions for the visualization were generated using
the average parameter estimates across activated voxels in ventromedial prefrontal cortex.

Elder et al. · Fluid Self-Concept J. Neurosci., 0, 2023 • 00(00):000 • 11



outdegree traits less as a function of social feedback as a way of
maintaining self-concept coherence. We also find that the vmPFC
responds more strongly to positive than negative PEs as a way of
maintaining self-concept positivity. Together, the asymmetrical
vmPFC response to PEs and constrained self-updating as a func-
tion of outdegree could be reflected in a couple of ways. One pos-
sibility is that the vmPFC may respond less strongly to negative
PEs and more strongly to positive PEs as outdegree increases,
potentially diminishing the influence of negative PEs in the
self-updating process. An alternative possibility is that before

computing PE in the learning process vmPFC may de-
emphasize negative feedback as outdegree increases. Doing
so would reduce the impact of negative feedback with many
implications by allowing fewer negative self-views across the
self-concept without contradiction.

A whole-brain analysis testing whether outdegree modulates
the processing of feedback and PE in the brain did not reveal any
regions. Thus, we constrained our test to a vmPFC ROI found in
our previous research that was associated with outdegree central-
ity (Elder et al., 2023). Consistent with the idea that the vmPFC
may be involved in constraining updating from negative feed-
back for higher outdegree traits, we identified a subcluster within
vmPFC (�6, 40, �14; k = 28, t = 3.54, p = 0.041) that showed a
significant interaction between outdegree centrality and feed-
back. We observed that as outdegree centrality increases, vmPFC
activity also increases for more positive feedback and decreases
for more negative feedback (Fig. 4). We also observed a similar
but marginally significant interaction of outdegree with PE in
vmPFC (�6, 40,�14; k = 18, t = 3.19, p = 0.058), suggesting that
the responsiveness to outdegree centrality during feedback proc-
essing may precede the computation of how the feedback differs
from expectations (i.e., PE; Fig. 4). Together, this asymmetrical
response to feedback as a function of outdegree centrality may
reflect discarding negative feedback with many implications for
the self-concept to minimize the negative self-views people feel
committed toward. Conversely, people may be motivated to
attend to positive feedback that bears many implications on
other self-views.

Figure 5. Statistical map of regions identified in conjunction analysis identifying intersec-
tion between prediction error contrast and feedback greater than RL-based social expectation
contrast. Ventromedial prefrontal cortex and posterior cingulate cortex regions are positively
associated with prediction errors, as well as the difference between feedback and expected
feedback, and thus appear to be distinctly associated with prediction error rather than merely
feedback.

Table 4. Clusters associated with overall prediction errors, their components, and the conjunction between prediction error components and prediction error

Positive association
Peak MNI coordinates

Cluster no. Region x y z Size T p

Prediction error (PE) = (1)
1 Lingual gyrus �14 �78 8 33203 17.9 0.001
2 Bilateral accumbens/putamen �14 0 �14 1157 7.32 0.006
3 Right supramarginal gyrus/intraparietal sulcus 36 �38 38 688 5.15 0.014
4 Right anterior middle temporal gyrus 64 �6 �10 346 5.7 0.031
5 Dorsal lateral prefrontal cortex 22 48 42 285 5.32 0.041
6 Ventral lateral prefrontal cortex 42 54 0 264 5.66 0.046

Prediction error components (feedback, expectation) = (1, �1)
1 Postcentral gyrus 40 �22 56 4081 9.57 0.001
2 Temporal occipital fusiform cortex �32 �48 �22 2904 6.81 0.001
3 left inferior frontal gyrus �44 8 28 2620 8.08 0.001
4 Left lateral superior occipital cortex �26 �68 30 1876 6.35 0.002
5 Ventral medial prefrontal cortex 0 40 �16 1599 6.85 0.002
6 Supplementary motor area �4 4 56 717 6.25 0.007
7 Right inferior frontal gyrus 50 14 32 510 5.7 0.011
8 Posterior cingulate cortex 0 �50 16 435 5.49 0.015
9 Occipital fusiform gyrus 22 �72 �16 245 4.81 0.034
10 Right angular gyrus 46 �52 20 226 4.85 0.039

Conjunction, PE \ Feedback . RL-SE
1 Temporal occipital fusiform cortex �46 �54 �28 1695 0.001
2 Superior lateral occipital cortex �28 �76 20 1691 0.002
3 Medial prefrontal cortex 0 40 �24 1316 0.002
4 Middle frontal gyrus �40 28 16 703 0.001
5 Middle frontal gyrus �30 �6 42 674 0.001
6 Supramarginal gyrus 62 �16 32 531 0.014
7 Posterior cingulate cortex �2 �44 4 323 0.015
8 Inferior middle temporal gyrus �58 �48 �16 132 0.001
9 Supplementary motor area 0 4 50 95 0.007
10 Occipital fusiform gyrus 26 �66 �30 63 0.034
11 Lateral prefrontal cortex �48 46 �10 59 0.001
12 Posterior middle temporal gyrus �62 �20 �24 53 0.001
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Updating processes
Discarding negative feedback for higher outdegree traits may be
one mechanism by which the brain governs self-concept updat-
ing. However, it is critical to also test whether activation at feed-
back predicts later changes in self-views. Does the response of
the brain during feedback translate to actual changes in self-
views as a function of outdegree centrality?

dmPFC predicts positive relative to negative updating
We first tested how brain activation during feedback predicted
positive, negative, or no changes in self-views. We modeled par-
ticipants’ change from initial self-evaluations to re-evaluations as
three separate regressors, positive change (change greater than
zero), negative change (change less than zero), and no change
(dummy indicators for trials in which self-evaluations remained
unchanged across self-evaluations). We then tested whether
brain activity during feedback more strongly predicts positive
than negative change (Positive Change. Negative Change). We
found regions in dmPFC and bilateral inferior frontal gyrus
(IFG) that were more strongly associated with positive change
than negative change (Table 6; Fig. 7). In contrast, we identified
no regions that were more associated with negative than positive
change. This may reflect the asymmetric trial-by-trial learning
rates we observe, whereby updating is skewed toward generating
more positive over more negative self-views. Together, findings
suggest that activity in these brain regions may be involved in
incorporating positive feedback that promotes positive change
and discarding negative feedback that would otherwise promote
negative change.

Neural mechanisms of outdegree-dependent resistance to change
Given that people resist updating self-views for higher outdegree
traits, we next sought to test what neural mechanisms during
feedback processing might predict this resistance to change in
self-evaluations. We modeled the interaction between outdegree

centrality and self-concept maintenance (i.e.,
trials in which people do vs do not update self-
views). We previously found that vmPFC
response to feedback was constrained by outde-
gree, so we next examined whether this con-
strained response to feedback would translate
into resisting self-evaluation change as well.
Indeed, in an ROI analysis, we identified a clus-
ter in vmPFC (�2, 46, �16; k = 41, k = 3.35,
p = 0.028) where activity decreases when people
resist updating self-views on higher outdegree
traits. This mirrors our previous finding that
vmPFC activity decreases in response to higher
outdegree negative feedback. It may be that
vmPFC activity is attenuated for higher outdegree
negative feedback that is being discarded in favor
of maintaining existing self-views.

In whole-brain analyses, we found that acti-
vation in dmPFC/presupplementary motor
area (pre-SMA) and left inferior frontal gyrus
increases when people maintain versus change
self-views on higher outdegree traits but little
difference in activity for lower outdegree traits
(Fig. 8; Table 7). These findings reflect that
these regions activate more strongly when peo-
ple maintain versus update their self-views on
higher outdegree (but not lower outdegree)
traits. These regions are known to be involved
in cognitive control (Badre et al., 2009; Badre

and Nee, 2018) and controlled semantic retrieval (Badre and
Wagner, 2002; Lambon Ralph et al., 2017; Jackson, 2021), and
may be gating the updating of the self-concept from feedback.
Specifically, the more implications a trait has for the self-concept,
the more control is exerted to resist changing self-views for this
trait.

Retrieval processes
In addition to making explicit predictions for how the brain sup-
ports the processing of feedback and the updating of self-views
from feedback, our model makes predictions for how the brain
may engage in retrieval and decision processes during self-
evaluations.

vmPFC tracks the similarity of a trait to past evaluated traits
Our model suggests that during self-evaluations people will
retrieve information about past traits encountered in the task
based on their relational similarity to the current trait to remain
consistent in the self-evaluations over time. We define the sum
of this similarity to past traits as a familiarity of a trait (Nosofsky,
1988) and use this familiarity measure to test which brain regions
may be processing similarity to past traits during self-evalua-
tions. Results revealed significant clusters in vmPFC (2, 30, �22;
k = 638, t = 5.88, p = 0.009), posterior middle and superior tem-
poral gyrus (�50, �30, �4; k = 1385, t = 6.88, p = 0.003), and
right middle frontal gyrus (44, 6, 32; k = 611, t = 6.17, p = 0.009)
that were negatively associated with familiarity at self-evaluation
(Fig. 9; Table 8 for other clusters). This suggests that these brain
regions are sensitive to the specific history of traits shown so far
in the task, such that when a trait is less familiar, there is greater
response across vmPFC, middle temporal gyrus, and middle
frontal gyrus regions.

These results are consistent with past work showing that the
posterior middle temporal gyrus is associated with semantic

Figure 6. Statistical map of regions that are associated with positive PEs greater than negative PEs (top) and nega-
tive PEs greater than positive PEs (bottom) prediction errors. Mentalizing regions are associated with the difference
between positive and negative prediction errors, whereas somatosensory regions are associated with the difference
between negative and positive prediction errors. Note: Nonparametric thresholding at a = 0.001 to correct for multi-
ple comparisons. Right, Color bar depicts t-statistic magnitude.
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Table 6. Clusters associated with positive change . negative change contrast

Asymmetrical change contrast (positive change, negative change) = (1, �1)

Positive Association
Peak MNI coordinates

Cluster no. Region x y z Size T p

1 Middle frontal gyrus �34 �2 66 3209 6.77 0.006
2 Presupplementary area dorsal medial prefrontal cortex 0 32 42 1560 6.35 0.018
3 Middle frontal gyrus 30 18 62 1245 5.03 0.026
4 Right lateral orbital frontal cortex 48 22 �10 706 6.23 0.048

Table 5. Clusters associated with positive prediction errors . negative prediction errors contrast

Asymmetrical prediction error contrast (positive PE, negative PE) = (1, �1)

Positive Association
Peak MNI coordinates

Cluster no. Region x y z Size T p

1 Left lateral orbital frontal cortex �48 22 �8 3902 12.1 0.001
2 Superior frontal gyrus 0 54 26 3406 8.4 0.001
3 Right lateral orbital frontal cortex 46 22 �10 1924 8.26 0.001
4 Intracalcarine cortex �10 �82 6 830 12.3 0.005
5 Ventral medial prefrontal cortex 0 34 �22 440 7.67 0.014
6 Right posterior middle temporal gyrus 50 �22 �8 252 5.69 0.039
7 Lateral occipital cortex �56 �66 26 214 6.1 0.049

Negative Association
Cluster no. Region x y z Size T p

1 Postcentral gyrus/right somatosensory 64 �30 44 20662 8.38 0.000
2 Right temporoocipital middle temporal gyrus 62 �58 0 397 6.86 0.019
3 Left middle frontal gyrus �44 38 30 311 5.75 0.028
4 Occipital fusiform gyrus 18 �76 �16 286 5.6 0.032

Figure 7. Statistical map of regions that are associated with positive change greater than negative change in self-evaluations, calculated as the difference between self-evaluations during
the re-evaluation phase versus the learning phase. Presupplementary motor area and inferior frontal gyrus are positively associated with the difference between positive changes in self-views
and negative changes in self-views. Note: Nonparametric thresholding at a = 0.001 to correct for multiple comparisons. Right, Color bar depicts t-statistic magnitude.

Figure 8. Statistical map of regions that exhibit greater activation when people maintain versus change their self-evaluations for higher outdegree centrality traits. Note: Nonparametric
thresholding at a = 0.001 to correct for multiple comparisons. Right, Color bar depicts t-statistic magnitude.
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retrieval (Davey et al., 2015, 2016), and middle frontal gyrus/lat-
eral prefrontal cortex is associated with novelty, recollection, and
familiarity-based retrieval (Friedman et al., 2001; Kishiyama et
al., 2009). These results are also broadly consistent with the
involvement of the vmPFC in processing novelty (Garrido et al.,
2015) and detecting whether concepts are compatible and con-
gruent in nonsocial domains (van Kesteren et al., 2012). To the
extent that there are fewer or less overall similar previous obser-
vations to draw on, a current trait is less familiar. In such instan-
ces, the vmPFC, middle temporal gyrus, and related regions may
provide a motivational novelty signal to help deploy processing
resources to exemplars from sparse or less-clear areas of the
network.

Angular gyrus responds to certainty of feedback
The familiarity analysis tests how brain activation reflects simi-
larity to past traits, but this does not describe how the brain proc-
esses the certainty of expected feedback of a trait given the
history of learned traits. For example, a trait could be very similar
to several past traits, but if these traits all received different feed-
back, there would be more uncertainty about what the feedback
would be for the current trait compared with if they all received
similar feedback. To test how the brain processes this decisional
uncertainty, we computed uncertainty as the likelihood of feed-
back given the similarity to prior traits that received feedback
(Davis et al., 2012b). First, we computed probabilities of feedback
categories based on how similar a current trait is to traits that
received a given feedback category, such that a feedback category
is more probable if prior traits that received that feedback are
more similar to the current trait. Then, uncertainty is computed
based on the probability of all feedback categories, and uncer-
tainty is highest if all feedback values have equivalent probabil-
ities because of similar traits receiving different feedback ratings.
In a whole-brain analysis examining regions that correlate with
uncertainty, we find that bilateral angular gyrus (right, 60, �50,

42; k = 828, t = 6.38, p = 0.004; right, 34,
�42, 40; k = 260, t = 5.35, p = 0.026; left,
�58, �48, 46; k = 297, t = 4.94, p = 0.024)
and other regions (Fig. 10; Table 9) are neg-
atively associated with uncertainty and that
no regions were positively associated with
uncertainty.

Our finding that angular gyrus activation
is greater for traits that have more certain
expected feedback is consistent with its role
as a hub for integrating contextual informa-
tion into specific events (Seghier, 2013) and
for schematic inference (Gilboa and Marlatte,
2017). Although past studies on uncertainty
using perceptual and economic decision tasks
have focused on regions such as lateral PFC
(Davis et al., 2017; FeldmanHall et al., 2019),
studies using decision tasks requiring atten-
tion to well-learned semantic relations gener-

ally focus on the angular gyrus (Sachs et al., 2008; Seghier, 2013;
Davis and Yee, 2019; Kuhnke et al., 2023). Indeed, we also previ-
ously found the angular gyrus tracks trait structure during self-eval-
uations (Elder et al., 2023).

Discussion
People generally strive to maintain the positivity and coherence
of their interconnected self-concepts, and the interdependencies
among people’s self-beliefs bear important implications for how
they update their self-views as a function of everyday social expe-
riences. Here, we implement the first instance of a reinforcement
learning model integrated directly into a network space to char-
acterize the neural mechanisms by which people update interre-
lated self-views from social feedback and how they propagate
this feedback across a system of self-beliefs. Doing so allows us to
illustrate how feedback not only affects specific self-views in iso-
lation but also propagates across trait dependencies to affect the
broader system of self-views more holistically. Consistent with
our hypothesis that people will process feedback differently for
traits that are more central in the network and thus key for pre-
serving coherence, we found that the vmPFC responds differ-
ently to feedback for traits with more dependencies (i.e., higher
outdegree), and people tend to change their self-views less readily
for these traits, suggesting that outdegree may modulate both
how the brain responds to feedback and whether people decide
to update their self-views from feedback. Together, our results
provide insight into how the brain uses semantic relations
among self-beliefs when learning from social feedback, and how
such processes provide constraints that promote self-concept
positivity and coherence.

Our results offer key insights into how beliefs about depend-
ency relationships among traits shape learning about the self-
concept and how this is mirrored by neural processing. By

Table 7. Clusters associated with outdegree-dependent maintaining of self-evaluations

Outdegree-dependent resistance to change

Positive Association
Peak MNI coordinates

Cluster no. Region x y z Size T p

1 Intracalcarine cortex 14 �78 8 4464 6.55 0.002
2 Left middle frontal gyrus �52 8 40 662 5.51 0.045
3 Presupplementary motor area dorsal medial prefrontal cortex 0 16 42 650 5.42 0.045

Figure 9. Statistical map of regions that exhibit less activity for familiarity (i.e., greater response to novelty).
Ventromedial prefrontal cortex and middle frontal gyrus are associated with less aggregate similarity to previously self-
evaluated traits. Note: Nonparametric thresholding at a = 0.001 to correct for multiple comparisons. Right, Color bar
depicts t-statistic magnitude.
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developing a model of how self-beliefs relate
to one another (Elder et al., 2023), we
extend past work examining neural mecha-
nisms of updating self-views from feedback,
which has largely considered self-beliefs as
isolated and unrelated instances
(Eisenberger et al., 2011; Korn et al., 2012;
Hughes and Beer, 2013; Will et al., 2017;
Kawamichi et al., 2018). We show that peo-
ple resist changing self-views on traits with
more implications on other traits to main-
tain self-concept coherence (Elder et al.,
2022) and identify neural computations
involved in maintaining positivity and co-
herence. First, we replicate findings showing
that vmPFC is preferentially tuned to posi-
tive over negative feedback (Somerville et
al., 2010; Korn et al., 2012; Yang et al., 2016;
Yoon et al., 2018) and further demonstrate
that this asymmetric response to feedback is partially driven by
the number of implications this feedback has for other depend-
ent traits. Moreover, we found that this outdegree-dependent
encoding of feedback constrains self-updating. In particular,
vmPFC responses during feedback were attenuated when people
maintained their self-evaluations on higher outdegree traits. This
mirrors the finding that vmPFC exhibits less activity to negative
feedback on higher outdegree traits, which are also associated with
less overall self-updating. Finally, we found that dmPFC and IFG
exhibited greater activity when resisting change relative to main-
taining self-views for higher outdegree traits. In the current con-
text, dmPFC and IFG may restrict the updating of self-
evaluations based on the dependency relations of the traits, re-
flective of controlled semantic retrieval (Noonan et al., 2013;
Jackson, 2021). Together, these findings highlight some of the
neural computations by which people maintain a coherent and
positive self-concept by selectively updating self-views from
feedback as a function of their number of dependents.

To maintain self-concept coherence and avoid contradictions
among self-beliefs, people must infer the dependencies among
traits and incorporate that information into their self-evalua-
tions. Indeed, we found that the vmPFC was negatively associ-
ated with our model-based familiarity measure, an aggregate
measure of the similarity of a trait to previously evaluated traits
in the task. The vmPFC may be involved in organizing and nav-
igating the self-concept, just as it navigates other cognitive
(Behrens et al., 2018) and spatial (Moser et al., 2008) maps that
people use to explore structured environments (Schiller et al.,
2015). In the current context, the vmPFC may signal the nov-
elty of a current decision in a structured space (Hampton et al.,

2006; Schuck et al., 2016; Kobayashi and Hsu, 2019; Park et al.,
2020b; Knudsen and Wallis, 2022) by evaluating its similarity
to past experiences based on their shared structural relation-
ships. People may use structural relationships to infer expected
feedback for a given decision, and by encoding its novelty, the
vmPFC may aid in generalizing past experiences to the decision
at hand.

Although our theory is influenced by past research on RL, de-
cision-making, and categorization, it is important to con-
sider how self-evaluations differ from standard learning and
decision-making contexts. In most learning tasks, subjects are ex-
plicitly incentivized to optimize their behavior to the reward con-
tingencies and determine which options provide more reward.
In contrast, participants in our task were not instructed to align
behavior with feedback, yet they nonetheless aligned their self-
evaluations with past feedback to similar traits and predicted
upcoming feedback about a trait when self-evaluating, taking
into account the variability of past feedback they have received.
This decision-making process was indexed by our model-based

Table 8. Clusters associated with familiarity

Familiarity contrast, familiarity = (1)

Negative association
Peak MNI coordinates

Cluster no. Region x y z Size T p

1 Left lateral orbital frontal cortex �48 20 �8 3161 7.9 0.000
2 Left posterior middle temporal gyrus �50 �30 �4 1385 6.88 0.003
3 Right precentral gyrus 40 �22 66 1331 8.11 0.002
4 Ventral medial prefrontal cortex 2 30 �22 638 5.88 0.009
5 Right middle frontal gyrus 44 6 32 611 6.17 0.009
6 Superior frontal gyrus �2 30 46 482 5.34 0.014
7 Lateral occipital cortex �40 �72 30 422 5.24 0.019
8 Right lateral orbital frontal cortex/anterior temporal lobe 42 20 �18 325 5.46 0.025

Figure 10. Nonparametric cluster-corrected regions negatively associated with uncertainty (i.e., greater response to cer-
tainty). Angular gyrus is associated with the certainty of expected feedback, given the similarity to prior traits that received
feedback. Note: Nonparametric thresholding at a = 0.001 to correct for multiple comparisons. Right, Color bar depicts t-
statistic magnitude.

Table 9. Clusters associated with uncertainty

Entropy contrast, entropy = (1)

Negative association
Peak MNI coordinates

Cluster no. Region x y z Size T p

1 Right angular gyrus 60 �50 42 828 6.38 0.004
2 Left angular gyrus �58 �48 46 297 4.94 0.024
3 Occipital fusiform gyrus 26 �68 �16 261 5.99 0.027
4 Right superior parietal lobule 34 �42 40 260 5.35 0.026
5 Right lateral prefrontal cortex 40 44 4 173 5.79 0.048
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uncertainty measure, which was negatively associated with angu-
lar gyrus, a region involved in making judgments by integrating
across well-learned semantic relations and multisensory inputs
(Seghier, 2013; Bonnici et al., 2018; Ramanan et al., 2018; Rugg
and King, 2018; Ramanan and Bellana, 2019) and the automatic
retrieval of semantic information (Davey et al., 2015). Even when
people are not required to learn about contingencies between
stimuli and feedback, they nonetheless evaluate the certainty of
expected feedback by considering such contingencies, and align-
ing with others’ views of them.

As one model of how people structure social knowledge, our
trait network model suggests that people have directed, causal
beliefs about the semantic dependencies between traits, which
they use to maintain coherent (noncontradictory) beliefs when
self-evaluating and incorporating social feedback. Our model is
thus distinct from a recent model of learning from social knowl-
edge structures (Frolichs et al., 2022), which is based on statistical
associations between traits gathered from the Big Five model of
personality (Digman, 1997). Models of statistical association
would not immediately predict core findings of our belief-based
model of differences in how people evaluate and update traits
with higher numbers of dependencies. Likewise, because associa-
tions are not directional like our dependency network, these
models could not predict differential effects for outdegree versus
indegree centrality, or tendencies to update via backward-propa-
gation versus forward-propagation. Although the Big Five model
of personality used in Frolichs et al. (2022) is a model that can
characterize how traits are statistically associated across individu-
als in the population, it is not intended to be a model of how peo-
ple reason about causal commitments. To characterize how
people maintain coherence among their self-views and stability
in their self-concept, people must reason about causal commit-
ments that support counterfactual reasoning (e.g., I would not be
witty if I were not outgoing; Zhou et al., 2023). Future studies
should aim to bridge these models and identify when directed or
undirected mental models provide a better account of social
learning and inference.

We made a number of pragmatic choices when designing this
task that open new avenues for future research. First, we con-
structed two discrete networks, one containing positive traits and
another containing negative traits, and focused here on the posi-
tive trait network, given our interest to examine how feedback
propagates to all traits within a network. Including both complete
networks would not have been possible because of time con-
straints and participant fatigue. Future research can test whether
the current mechanisms extend to learning about negative traits.
We also described feedback to participants as coming from admis-
sions committee members. This raises interesting questions about
whether learning effects vary based on status or other features of
the sources of feedback. Future studies might also compare how
people learn about themselves and others to examine the differen-
ces between self-relevant relative to other-relevant learning (Korn
et al., 2012).

The self-concept is a dynamic mental structure, with different
self-aspects activated across varying contexts (Markus and
Kunda, 1986; Markus and Wurf, 1987; McConnell, 2011). Here,
we provide the first evidence of the neural mechanisms support-
ing this dynamic process and a formal model for how this working
self-concept is activated by different experiences. By developing a
deeper structure of beliefs about dependency relations within the
self-concept, we can understand how people dynamically update
their self-beliefs. People learn from feedback, propagate that
feedback across a system of beliefs, and constrain their learn-
ing based on the number of trait implications, which is

retrieved for subsequent self-reflections via relational-match-
ing processes. Importantly, asymmetries in self-learning are
mirrored at the neural level by parallel effects of network
structure on brain activation. Our work highlights the impor-
tance of incorporating relational structure into how we
understand people’s self-beliefs and changes to the working
self-concept as a function of experience and social feedback.
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